-\subsubsection{Network bandwidth impacts on performance}
-\ \\
-\begin{table} [ht!]
-\centering
-\begin{tabular}{r c }
- \hline
- Grid Architecture & 2 $\times$ 16\\ %\hline
-\multirow{2}{*}{Inter Network N1} & $bw$=From 1Gbs to 10 Gbs \\ %\hline
- & $lat$= 5.10$^{-5}$ second \\
- Input matrix size & $N_{x} \times N_{y} \times N_{z} =150 \times 150 \times 150$\\ \hline \\
- \end{tabular}
-\caption{Test conditions: Network bandwidth impacts}
-% \RC{Qu'est ce qui varie ici? Il n'y a pas de variation dans le tableau}
-%\RCE{C est le bw}
-\label{tab:04}
-\end{table}
-
-
-\begin{figure} [htbp]
-\centering
-\includegraphics[width=100mm]{network_bandwith_impact_on_execution_time.pdf}
-\caption{Network bandwith impacts on execution time}
-%\AG{``Execution time'' avec un 't' minuscule}. Idem autres figures.}
-%\RCE{Corrige}
-\label{fig:04}
-\end{figure}
-
-The results of increasing the network bandwidth show the improvement of the
-performance for both algorithms by reducing the execution time (see
-Figure~\ref{fig:04}). However, in this case, the Krylov multisplitting method
-presents a better performance in the considered bandwidth interval with a gain
-of $40\%$ which is only around $24\%$ for the classical GMRES.
-
-\subsubsection{Input matrix size impacts on performance}
-\ \\
-\begin{table} [ht!]
-\centering
-\begin{tabular}{r c }
- \hline
- Grid Architecture & 4 $\times$ 8\\ %\hline
- Inter Network & $bw$=1Gbs - $lat$=5.10$^{-5}$ \\
- Input matrix size & $N_{x} \times N_{y} \times N_{z}$ = From 50$^{3}$ to 190$^{3}$\\ \hline
- \end{tabular}
-\caption{Test conditions: Input matrix size impacts}
-\label{tab:05}
-\end{table}
-
-
-\begin{figure} [htbp]
-\centering
-\includegraphics[width=100mm]{pb_size_impact_on_execution_time.pdf}
-\caption{Problem size impacts on execution time}
-\label{fig:05}
-\end{figure}