+\subsubsection{Network latency impacts on performance\\}
+Figure~\ref{fig:03} shows the impact of the network latency on the performances of both algorithms. The simulation is conducted on a computational grid of 2 clusters of 16 processors each (i.e. configuration 2$\times$16) interconnected by a network of bandwidth $bw$=1Gbs to solve a 3D Poisson problem of size $150^3$. According to the results, a degradation of the network latency from $8\mu$s to $60\mu$s implies an absolute execution time increase for both algorithms, but not with the same rate of degradation. The GMRES algorithm is more sensitive to the latency degradation than the Krylov two-stage algorithm.
+
+\begin{figure}[t]
+\centering
+\includegraphics[width=100mm]{network_latency_impact_on_execution_time.pdf}
+\caption{Network latency impacts on execution times}
+\label{fig:03}
+\end{figure}
+
+\subsubsection{Network bandwidth impacts on performance\\}
+Figure~\ref{fig:04} reports the results obtained for the simulation of a grid of 2$\times$16 processors interconnected by a network of latency $lat=50\mu$s to solve a 3D Poisson problem of size $150^3$. The results of increasing the network bandwidth from 1Gbs to 10Gbs show the performances improvement for both algorithms by reducing the execution times. However, the Krylov two-stage algorithm presents a better performance in the considered bandwidth interval with a gain of $40\%$ compared to only about $24\%$ for the classical GMRES algorithm.
+
+\begin{figure}[t]
+\centering
+\includegraphics[width=100mm]{network_bandwith_impact_on_execution_time.pdf}
+\caption{Network bandwith impacts on execution time}
+\label{fig:04}
+\end{figure}
+
+
+
+
+
+
+
+