-where a collection of $L$ triplets $(M_\ell, N_\ell, E_\ell)$ defines the multisplitting of matrix $A$, such that: the different splittings are defined as $A=M_\ell-N_\ell$ where $M_\ell$ are nonsingular matrices, and $\sum_\ell{E_\ell=I}$ are diagonal nonnegative weighting matrices and $I$ is the identity matrix.
+where a collection of $L$ triplets $(M_\ell, N_\ell, E_\ell)$ defines the multisplitting of matrix $A$, such that: the different splittings are defined as $A=M_\ell-N_\ell$ where $M_\ell$ are nonsingular matrices, and $\sum_\ell{E_\ell=I}$ are diagonal nonnegative weighting matrices and $I$ is the identity matrix. The iterations of the multisplitting methods can naturally be computed in parallel such that each processor or a group of processors is responsible for solving one splitting as a linear sub-system
+\begin{equation}
+M_\ell y_\ell^{k+1} = R_\ell^k,\mbox{~such that~} R_\ell^k = N_\ell x^k_\ell + b,
+\label{eq:03}
+\end{equation}
+then the weighting matrices $E_\ell$ are used to compute the solution of the global system~(\ref{eq:01})
+\begin{equation}
+x^{k+1}=\displaystyle\sum^L_{\ell=1} E_\ell y^{k+1}_\ell.
+\label{eq:04}
+\end{equation}
+The convergence of the multisplitting methods, based on synchronous or asynchronous iterations, is studied by many authors. It is dependent on the condition
+\begin{equation}
+\rho(\displaystyle\sum_{\ell=1}^L E_\ell M^{-1}_\ell N_\ell) < 1,
+\label{eq:05}
+\end{equation}
+where $\rho$ is the spectral radius of the square matrix. The different linear splittings~(\ref{eq:03}) arising from the multisplitting of matrix $A$can be solved exactly with a direct method or approximated with an iterative method. When the inner method used to solve the linear sub-systems is iterative, the multisplitting method is called {\it inner-outer iterative method} or {\it two-stage multisplitting method}.
+
+In this paper we are focused on two-stage multisplitting methods where the well-known iterative method GMRES is used as an inner iteration.