]> AND Private Git Repository - rce2015.git/blobdiff - paper.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
DL : conclu. Manque les futurs works
[rce2015.git] / paper.tex
index c8b89180f3571607213f8565464409b7704a16a9..fa447f65dda929248e60d8372c2057d50db6ad9a 100644 (file)
--- a/paper.tex
+++ b/paper.tex
@@ -70,8 +70,8 @@
 
 
 
 
 
 
-\begin{document} \RCE{Titre a confirmer.} \title{Comparative performance
-analysis of simulated grid-enabled numerical iterative algorithms}
+\begin{document}
+\title{Grid-enabled simulation of large-scale linear iterative solvers}
 %\itshape{\journalnamelc}\footnotemark[2]}
 
 \author{Charles Emile Ramamonjisoa\affil{1},
 %\itshape{\journalnamelc}\footnotemark[2]}
 
 \author{Charles Emile Ramamonjisoa\affil{1},
@@ -165,34 +165,30 @@ application  on   a  given   multi-core  architecture.  Finding   good  resource
 allocations policies under  varying CPU power, network speeds and  loads is very
 challenging and  labor intensive~\cite{Calheiros:2011:CTM:1951445.1951450}. This
 problematic is  even more difficult  for the  asynchronous scheme where  a small
 allocations policies under  varying CPU power, network speeds and  loads is very
 challenging and  labor intensive~\cite{Calheiros:2011:CTM:1951445.1951450}. This
 problematic is  even more difficult  for the  asynchronous scheme where  a small
-parameter variation of the execution platform can lead to very different numbers
-of iterations to reach the converge and so to very different execution times. In
-this challenging context we think that the  use of a simulation tool can greatly
-leverage the possibility of testing various platform scenarios.
-
-The main contribution of this paper is to show that the use of a simulation tool
-(i.e. the SimGrid toolkit~\cite{SimGrid}) in the context of real  parallel
-applications (i.e. large linear system solvers) can help developers to better
-tune their application for a given multi-core architecture. To show the validity
-of this approach we first compare the simulated execution of the multisplitting
-algorithm  with  the  GMRES   (Generalized   Minimal  Residual)
-solver~\cite{saad86} in synchronous mode. 
-
-\LZK{Pas trop convainquant comme argument pour valider l'approche de simulation. \\On peut dire par exemple: on a pu simuler différents algos itératifs à large échelle (le plus connu GMRES et deux variantes de multisplitting) et la simulation nous a permis (sans avoir le vrai matériel) de déterminer quelle serait la meilleure solution pour une telle configuration de l'archi ou vice versa.\\A revoir...}
-
-The obtained results on different
-simulated multi-core architectures confirm the real results previously obtained
-on non simulated architectures.  
-
-\LZK{Il n y a pas dans la partie expé cette comparaison et confirmation des résultats entre la simulation et l'exécution réelle des algos sur les vrais clusters.\\ Sinon on pourrait ajouter dans la partie expé une référence vers le journal supercomput de krylov multi pour confirmer que cette méthode est meilleure que GMRES sur les clusters large échelle.}
-
-We also confirm  the efficiency  of the
-asynchronous  multisplitting algorithm  compared to the synchronous  GMRES. 
-
-\LZK{P.S.: Pour tout le papier, le principal objectif n'est pas de faire des comparaisons entre des méthodes itératives!!\\Sinon, les deux algorithmes Krylov multisplitting synchrone et multisplitting asynchrone sont plus efficaces que GMRES sur des clusters à large échelle.\\Et préciser, si c'est vraiment le cas, que le multisplitting asynchrone est plus efficace et adapté aux clusters distants par rapport aux deux autres algos (je n'ai pas encore lu la partie expé)}
-
-In
-this way and with a simple computing architecture (a laptop) SimGrid allows us
+parameter variation of the execution platform and of the application data can
+lead to very different numbers of iterations to reach the converge and so to
+very different execution times. In this challenging context we think that the
+use of a simulation tool can greatly leverage the possibility of testing various
+platform scenarios.
+
+The  {\bf main  contribution  of  this paper}  is  to show  that  the  use of  a
+simulation tool (i.e. the SimGrid toolkit~\cite{SimGrid}) in the context of real
+parallel applications (i.e. large linear  system solvers) can help developers to
+better tune their  application for a given multi-core architecture.  To show the
+validity of this approach we first compare the simulated execution of the Krylov
+multisplitting  algorithm   with  the   GMRES  (Generalized   Minimal  Residual)
+solver~\cite{saad86} in  synchronous mode.  The simulation  results allow  us to
+determine  which method  to choose  given a  specified multi-core  architecture.
+Moreover the  obtained results  on different simulated  multi-core architectures
+confirm the  real results  previously obtained  on non  simulated architectures.
+More precisely the simulated results are in accordance (i.e. with the same order
+of magnitude)  with the works  presented in~\cite{couturier15}, which  show that
+the synchronous  multisplitting method  is more efficient  than GMRES  for large
+scale  clusters.   Simulated   results  also  confirm  the   efficiency  of  the
+asynchronous  multisplitting   algorithm  compared  to  the   synchronous  GMRES
+especially in case of geographically distant clusters.
+
+In this way and with a simple computing architecture (a laptop) SimGrid allows us
 to run a test campaign  of  a  real parallel iterative  applications on
 different simulated multi-core architectures.  To our knowledge, there is no
 related work on the large-scale multi-core simulation of a real synchronous and
 to run a test campaign  of  a  real parallel iterative  applications on
 different simulated multi-core architectures.  To our knowledge, there is no
 related work on the large-scale multi-core simulation of a real synchronous and
@@ -205,8 +201,6 @@ Section~\ref{sec:04} details the different solvers that we use.  Finally our
 experimental results are presented in section~\ref{sec:expe} followed by some
 concluding remarks and perspectives.
 
 experimental results are presented in section~\ref{sec:expe} followed by some
 concluding remarks and perspectives.
 
-\LZK{Proposition d'un titre pour le papier: Grid-enabled simulation of large-scale linear iterative solvers.}
-
 
 \section{The asynchronous iteration model and the motivations of our work}
 \label{sec:asynchro}
 
 \section{The asynchronous iteration model and the motivations of our work}
 \label{sec:asynchro}
@@ -252,6 +246,57 @@ magnitude. To our knowledge, there is no study on this problematic.
 SimGrid~\cite{SimGrid,casanova+legrand+quinson.2008.simgrid,casanova+giersch+legrand+al.2014.versatile} is a discrete event simulation framework to study the behavior of large-scale distributed computing platforms as Grids, Peer-to-Peer systems, Clouds and High Performance Computation systems. It is widely used to simulate and evaluate heuristics, prototype applications or even assess legacy MPI applications. It is still actively developed by the scientific community and distributed as an open source software.
 
 %%%%%%%%%%%%%%%%%%%%%%%%%
 SimGrid~\cite{SimGrid,casanova+legrand+quinson.2008.simgrid,casanova+giersch+legrand+al.2014.versatile} is a discrete event simulation framework to study the behavior of large-scale distributed computing platforms as Grids, Peer-to-Peer systems, Clouds and High Performance Computation systems. It is widely used to simulate and evaluate heuristics, prototype applications or even assess legacy MPI applications. It is still actively developed by the scientific community and distributed as an open source software.
 
 %%%%%%%%%%%%%%%%%%%%%%%%%
+% SimGrid~\cite{SimGrid,casanova+legrand+quinson.2008.simgrid,casanova+giersch+legrand+al.2014.versatile}
+% is a simulation framework to study the behavior of large-scale distributed
+% systems.  As its name suggests, it emanates from the grid computing community,
+% but is nowadays used to study grids, clouds, HPC or peer-to-peer systems.  The
+% early versions of SimGrid date back from 1999, but it is still actively
+% developed and distributed as an open source software.  Today, it is one of the
+% major generic tools in the field of simulation for large-scale distributed
+% systems.
+
+SimGrid provides several programming interfaces: MSG to simulate Concurrent
+Sequential Processes, SimDAG to simulate DAGs of (parallel) tasks, and SMPI to
+run real applications written in MPI~\cite{MPI}.  Apart from the native C
+interface, SimGrid provides bindings for the C++, Java, Lua and Ruby programming
+languages.  SMPI is the interface that has been used for the work described in
+this paper.  The SMPI interface implements about \np[\%]{80} of the MPI 2.0
+standard~\cite{bedaride+degomme+genaud+al.2013.toward}, and supports
+applications written in C or Fortran, with little or no modifications (cf Section IV - paragraph B).
+
+Within SimGrid, the execution of a distributed application is simulated by a
+single process.  The application code is really executed, but some operations,
+like communications, are intercepted, and their running time is computed
+according to the characteristics of the simulated execution platform.  The
+description of this target platform is given as an input for the execution, by
+means of an XML file.  It describes the properties of the platform, such as
+the computing nodes with their computing power, the interconnection links with
+their bandwidth and latency, and the routing strategy.  The scheduling of the
+simulated processes, as well as the simulated running time of the application
+are computed according to these properties.
+
+To compute the durations of the operations in the simulated world, and to take
+into account resource sharing (e.g. bandwidth sharing between competing
+communications), SimGrid uses a fluid model.  This allows users to run relatively fast
+simulations, while still keeping accurate
+results~\cite{bedaride+degomme+genaud+al.2013.toward,
+  velho+schnorr+casanova+al.2013.validity}.  Moreover, depending on the
+simulated application, SimGrid/SMPI allows to skip long lasting computations and
+to only take their duration into account.  When the real computations cannot be
+skipped, but the results are unimportant for the simulation results, it is
+also possible to share dynamically allocated data structures between
+several simulated processes, and thus to reduce the whole memory consumption.
+These two techniques can help to run simulations on a very large scale.
+
+The validity of simulations with SimGrid has been asserted by several studies.
+See, for example, \cite{velho+schnorr+casanova+al.2013.validity} and articles
+referenced therein for the validity of the network models.  Comparisons between
+real execution of MPI applications on the one hand, and their simulation with
+SMPI on the other hand, are presented in~\cite{guermouche+renard.2010.first,
+  clauss+stillwell+genaud+al.2011.single,
+  bedaride+degomme+genaud+al.2013.toward}.  All these works conclude that
+SimGrid is able to simulate pretty accurately the real behavior of the
+applications.
 %%%%%%%%%%%%%%%%%%%%%%%%%
 
 \section{Two-stage multisplitting methods}
 %%%%%%%%%%%%%%%%%%%%%%%%%
 
 \section{Two-stage multisplitting methods}
@@ -580,9 +625,7 @@ speed inter-cluster  network (N1) and  also on  a less performant  network (N2).
 Figure~\ref{fig:02} shows that end users will reduce the execution time
 for  both  algorithms when using  a  grid  architecture  like  4x16 or  8x8: the reduction is about $2$. The results depict  also that when
 the  network speed  drops down (variation of 12.5\%), the  difference between  the two Multisplitting algorithms execution times can reach more than 25\%.
 Figure~\ref{fig:02} shows that end users will reduce the execution time
 for  both  algorithms when using  a  grid  architecture  like  4x16 or  8x8: the reduction is about $2$. The results depict  also that when
 the  network speed  drops down (variation of 12.5\%), the  difference between  the two Multisplitting algorithms execution times can reach more than 25\%.
-%\RC{c'est pas clair : la différence entre quoi et quoi?}
-%\DL{pas clair}
-%\RCE{Modifie}
+
 
 
 %\begin{wrapfigure}{l}{100mm}
 
 
 %\begin{wrapfigure}{l}{100mm}
@@ -727,10 +770,16 @@ on the  algorithms performance in  varying the CPU  power of the  clusters nodes
 from $1$ to $19$ GFlops.  The outputs  depicted in Figure~\ref{fig:06}  confirm the
 performance gain,  around $95\%$ for  both of the  two methods, after  adding more
 powerful CPU.
 from $1$ to $19$ GFlops.  The outputs  depicted in Figure~\ref{fig:06}  confirm the
 performance gain,  around $95\%$ for  both of the  two methods, after  adding more
 powerful CPU.
+\ \\
+%\DL{il faut une conclusion sur ces tests : ils confirment les résultats déjà
+%obtenus en grandeur réelle. Donc c'est une aide précieuse pour les dev. Pas
+%besoin de déployer sur une archi réelle}
 
 
-\DL{il faut une conclusion sur ces tests : ils confirment les résultats déjà
-obtenus en grandeur réelle. Donc c'est une aide précieuse pour les dev. Pas
-besoin de déployer sur une archi réelle}
+To conclude these series of experiments, with  SimGrid we have been able to make
+many simulations  with many parameters  variations. Doing all  these experiments
+with a real platform is most of  the time not possible. Moreover the behavior of
+both GMRES and  Krylov multisplitting methods is in accordance  with larger real
+executions on large scale supercomputer~\cite{couturier15}.
 
 
 \subsection{Comparing GMRES in native synchronous mode and the multisplitting algorithm in asynchronous mode}
 
 
 \subsection{Comparing GMRES in native synchronous mode and the multisplitting algorithm in asynchronous mode}
@@ -826,7 +875,29 @@ geographically distant clusters through the internet.
 
 
 \section{Conclusion}
 
 
 \section{Conclusion}
-CONCLUSION
+
+In this paper we have presented the simulation of the execution of three
+different parallel solvers on some multi-core architectures. We have show that
+the SimGrid toolkit is an interesting simulation tool that has allowed us to
+determine  which method  to choose  given a  specified multi-core  architecture.
+Moreover the simulated results are in accordance (i.e. with the same order of
+magnitude)  with the works  presented in~\cite{couturier15}. Simulated   results
+also  confirm  the   efficiency  of  the asynchronous  multisplitting
+algorithm  compared  to  the   synchronous  GMRES especially in case of
+geographically distant clusters.
+
+These results are important since it is very  time consuming to find optimal
+configuration  and deployment requirements for a given application  on   a given
+multi-core  architecture. Finding   good  resource allocations policies under
+varying CPU power, network speeds and  loads is very challenging and  labor
+intensive. This problematic is  even more difficult  for the  asynchronous
+scheme where  a small parameter variation of the execution platform and of the
+application data can lead to very different numbers of iterations to reach the
+converge and so to very different execution times.
+
+
+Our future works...
+
 
 
 %\section*{Acknowledgment}
 
 
 %\section*{Acknowledgment}
@@ -835,10 +906,7 @@ This work is partially funded by the Labex ACTION program (contract ANR-11-LABX-
 
 \bibliographystyle{wileyj}
 \bibliography{biblio}
 
 \bibliographystyle{wileyj}
 \bibliography{biblio}
-\AG{Des warnings bibtex à corriger (%
-  \texttt{entry type for "SimGrid" isn't style-file defined},
-  \texttt{empty booktitle in Bru95}%
-).}
+
 
 \end{document}
 
 
 \end{document}