]> AND Private Git Repository - rce2015.git/blobdiff - paper.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
Merge branch 'master' of ssh://bilbo.iut-bm.univ-fcomte.fr/rce2015
[rce2015.git] / paper.tex
index 1b7b9ebff1688140d3181e85df972a01fe361ff1..5122a8498e4dc14ad126a20249bc6c7e043bece3 100644 (file)
--- a/paper.tex
+++ b/paper.tex
@@ -94,7 +94,7 @@
   Email:~\email{l.zianekhodja@ulg.ac.be}
 }
 
-\begin{abstract}   The behavior of multi-core applications is always a challenge
+\begin{abstract} The behavior of multi-core applications is always a challenge
 to predict, especially with a new architecture for which no experiment has been
 performed. With some applications, it is difficult, if not impossible, to build
 accurate performance models. That is why another solution is to use a simulation
@@ -102,19 +102,23 @@ tool which allows us to change many parameters of the architecture (network
 bandwidth, latency, number of processors) and to simulate the execution of such
 applications. The main contribution of this paper is to show that the use of a
 simulation tool (here we have decided to use the SimGrid toolkit) can really
-help developpers to better tune their applications for a given multi-core
+help developers to better tune their applications for a given multi-core
 architecture.
 
-In particular we focus our attention on two parallel iterative algorithms based
-on the  Multisplitting algorithm  and we  compare them  to the  GMRES algorithm.
-These algorithms  are used to  solve linear  systems. Two different  variants of
-the Multisplitting are studied: one  using synchronoous  iterations and  another
-one  with asynchronous iterations. For each algorithm we have simulated
+%In particular we focus our attention on two parallel iterative algorithms based
+%on the  Multisplitting algorithm  and we  compare them  to the  GMRES algorithm.
+%These algorithms  are used to  solve linear  systems. Two different  variants of
+%the Multisplitting are studied: one  using synchronoous  iterations and  another
+%one  with asynchronous iterations.
+In this paper we focus our attention on the simulation of iterative algorithms to solve sparse linear systems on large clusters. We study the behavior of the widely used GMRES algorithm and two different variants of the Multisplitting algorithms: one using synchronous iterations and another one with asynchronous iterations.  
+For each algorithm we have simulated
 different architecture parameters to evaluate their influence on the overall
-execution time.  The obtain simulated results confirm the real results
-previously obtained on different real multi-core architectures and also confirm
-the efficiency of the asynchronous multisplitting algorithm compared to the
-synchronous GMRES method.
+execution time. 
+%The obtain simulated results confirm the real results
+%previously obtained on different real multi-core architectures and also confirm
+%the efficiency of the asynchronous Multisplitting algorithm compared to the
+%synchronous GMRES method.
+The simulations confirm the real results previously obtained on different real multi-core architectures and also confirm the efficiency of the asynchronous Multisplitting algorithm on distant clusters compared to the synchronous GMRES algorithm.
 
 \end{abstract}
 
@@ -625,9 +629,7 @@ speed inter-cluster  network (N1) and  also on  a less performant  network (N2).
 Figure~\ref{fig:02} shows that end users will reduce the execution time
 for  both  algorithms when using  a  grid  architecture  like  4x16 or  8x8: the reduction is about $2$. The results depict  also that when
 the  network speed  drops down (variation of 12.5\%), the  difference between  the two Multisplitting algorithms execution times can reach more than 25\%.
-%\RC{c'est pas clair : la différence entre quoi et quoi?}
-%\DL{pas clair}
-%\RCE{Modifie}
+
 
 
 %\begin{wrapfigure}{l}{100mm}
@@ -772,10 +774,16 @@ on the  algorithms performance in  varying the CPU  power of the  clusters nodes
 from $1$ to $19$ GFlops.  The outputs  depicted in Figure~\ref{fig:06}  confirm the
 performance gain,  around $95\%$ for  both of the  two methods, after  adding more
 powerful CPU.
+\ \\
+%\DL{il faut une conclusion sur ces tests : ils confirment les résultats déjà
+%obtenus en grandeur réelle. Donc c'est une aide précieuse pour les dev. Pas
+%besoin de déployer sur une archi réelle}
 
-\DL{il faut une conclusion sur ces tests : ils confirment les résultats déjà
-obtenus en grandeur réelle. Donc c'est une aide précieuse pour les dev. Pas
-besoin de déployer sur une archi réelle}
+To conclude these series of experiments, with  SimGrid we have been able to make
+many simulations  with many parameters  variations. Doing all  these experiments
+with a real platform is most of  the time not possible. Moreover the behavior of
+both GMRES and  Krylov multisplitting methods is in accordance  with larger real
+executions on large scale supercomputer~\cite{couturier15}.
 
 
 \subsection{Comparing GMRES in native synchronous mode and the multisplitting algorithm in asynchronous mode}
@@ -822,7 +830,7 @@ Again,  comprehensive and  extensive tests  have been  conducted with  different
 parameters as  the CPU power, the  network parameters (bandwidth and  latency)
 and with different problem size. The  relative gains greater than $1$  between the
 two algorithms have  been captured after  each step  of the test.   In
-Figure~\ref{fig:07}  are  reported the  best  grid  configurations allowing
+Table~\ref{tab:08}  are  reported the  best  grid  configurations allowing
 the  multisplitting method to  be more than  $2.5$ times faster  than the
 classical  GMRES.  These  experiments also  show the  relative tolerance  of the
 multisplitting algorithm when using a low speed network as usually observed with
@@ -837,7 +845,7 @@ geographically distant clusters through the internet.
     \end{tabular}}
 
 
-\begin{figure}[!t]
+\begin{table}[!t]
 \centering
 %\begin{table}
 %  \caption{Relative gain of the multisplitting algorithm compared with the classical GMRES}
@@ -864,10 +872,9 @@ geographically distant clusters through the internet.
     \hline
   \end{mytable}
 %\end{table}
- \caption{Relative gain of the multisplitting algorithm compared with the classical GMRES
-\AG{C'est un tableau, pas une figure}}
- \label{fig:07}
-\end{figure}
+ \caption{Relative gain of the multisplitting algorithm compared with the classical GMRES}
+ \label{tab:08}
+\end{table}
 
 
 \section{Conclusion}