-where the real-valued function $\phi(x,y,z)=0\mbox{~on~}\partial\Omega$ is the solution sought, $f(x,y,z)$ is a known function and the domain $\Omega=[0,1]^3$.
+such that
+\begin{equation*}
+\phi(x,y,z)=0\mbox{~on the boundary~}\partial\Omega
+\end{equation*}
+where the real-valued function $\phi(x,y,z)$ is the solution sought, $f(x,y,z)$ is a known function and $\Omega=[0,1]^3$. The 3D discretization of the Laplace operator $\nabla^2$ with the finite difference scheme includes 7 points stencil on the computational grid. The numerical approximation of the Poisson problem on three-dimensional grid is repeatedly computed as $\phi=\phi^\star$ such that
+\begin{equation}
+\begin{array}{ll}
+\phi^\star(x,y,z)= & \frac{1}{6}(\phi(x-h,y,z)+\phi(x+h,y,z) \\
+ & +\phi(x,y-h,z)+\phi(x,y+h,z) \\
+ & +\phi(x,y,z-h)+\phi(x,y,z+h)\\
+ & -h^2f(x,y,z))
+\end{array}
+\label{eq:08}
+\end{equation}
+until convergence where $h$ is the grid spacing between two adjacent elements in the 3D computational grid.
+
+In the parallel context, the 3D Poisson problem is partitioned into $L\times p$ sub-problems such that $L$ is the number of clusters and $p$ is the number of processors in each cluster. We apply the three-dimensional partitioning instead of the row-by-row one in order to reduce the size of the data shared at the sub-problems boundaries. In this case, each processor is in charge of parallelepipedic sub-problem and has at most six neighbors in the same cluster or in distant clusters with which it shares data at boundaries.