+\section{SimGrid}
+ \label{sec:simgrid}
+
+%%%%%%%%%%%%%%%%%%%%%%%%%
+%%%%%%%%%%%%%%%%%%%%%%%%%
+
+\section{Two-stage multisplitting methods}
+\label{sec:04}
+\subsection{Synchronous and asynchronous two-stage methods for sparse linear systems}
+\label{sec:04.01}
+In this paper we focus on two-stage multisplitting methods in their both versions synchronous and asynchronous~\cite{Frommer92,Szyld92,Bru95}. These iterative methods are based on multisplitting methods~\cite{O'leary85,White86,Alefeld97} and use two nested iterations: the outer iteration and the inner iteration. Let us consider the following sparse linear system of $n$ equations in $\mathbb{R}$
+\begin{equation}
+Ax=b,
+\label{eq:01}
+\end{equation}
+where $A$ is a sparse square and nonsingular matrix, $b$ is the right-hand side and $x$ is the solution of the system. Our work in this paper is restricted to the block Jacobi splitting method. This approach of multisplitting consists in partitioning the matrix $A$ into $L$ horizontal band matrices of order $\frac{n}{L}\times n$ without overlapping (i.e. sub-vectors $\{x_\ell\}_{1\leq\ell\leq L}$ are disjoint). The two-stage multisplitting methods solve the linear system~(\ref{eq:01}) iteratively as follows
+\begin{equation}
+x_\ell^{k+1} = A_{\ell\ell}^{-1}(b_\ell - \displaystyle\sum^{L}_{\substack{m=1\\m\neq\ell}}{A_{\ell m}x^k_m}),\mbox{~for~}\ell=1,\ldots,L\mbox{~and~}k=1,2,3,\ldots
+\label{eq:02}
+\end{equation}
+where $x_\ell$ are sub-vectors of the solution $x$, $b_\ell$ are the sub-vectors of the right-hand side $b$, and $A_{\ell\ell}$ and $A_{\ell m}$ are diagonal and off-diagonal blocks of matrix $A$ respectively. The iterations of these methods can naturally be computed in parallel such that each processor or cluster of processors is responsible for solving one splitting as a linear sub-system
+\begin{equation}
+A_{\ell\ell} x_\ell = c_\ell,\mbox{~for~}\ell=1,\ldots,L,
+\label{eq:03}
+\end{equation}
+where right-hand sides $c_\ell=b_\ell-\sum_{m\neq\ell}A_{\ell m}x_m$ are computed using the shared vectors $x_m$. In this paper, we use the well-known iterative method GMRES ({\it Generalized Minimal RESidual})~\cite{saad86} as an inner iteration to approximate the solutions of the different splittings arising from the block Jacobi multisplitting of matrix $A$. The algorithm in Figure~\ref{alg:01} shows the main key points of our block Jacobi two-stage method executed by a cluster of processors. In line~\ref{solve}, the linear sub-system~(\ref{eq:03}) is solved in parallel using GMRES method where $\MIG$ and $\TOLG$ are the maximum number of inner iterations and the tolerance threshold for GMRES respectively. The convergence of the two-stage multisplitting methods, based on synchronous or asynchronous iterations, is studied by many authors for example~\cite{Bru95,bahi07}.
+
+\begin{figure}[t]
+%\begin{algorithm}[t]
+%\caption{Block Jacobi two-stage multisplitting method}
+\begin{algorithmic}[1]
+ \Input $A_\ell$ (sparse matrix), $b_\ell$ (right-hand side)
+ \Output $x_\ell$ (solution vector)\vspace{0.2cm}
+ \State Set the initial guess $x^0$
+ \For {$k=1,2,3,\ldots$ until convergence}
+ \State $c_\ell=b_\ell-\sum_{m\neq\ell}A_{\ell m}x_m^{k-1}$
+ \State $x^k_\ell=Solve_{gmres}(A_{\ell\ell},c_\ell,x^{k-1}_\ell,\MIG,\TOLG)$\label{solve}
+ \State Send $x_\ell^k$ to neighboring clusters\label{send}
+ \State Receive $\{x_m^k\}_{m\neq\ell}$ from neighboring clusters\label{recv}
+ \EndFor
+\end{algorithmic}
+\caption{Block Jacobi two-stage multisplitting method}
+\label{alg:01}
+%\end{algorithm}
+\end{figure}
+
+In this paper, we propose two algorithms of two-stage multisplitting methods. The first algorithm is based on asynchronous model which allows the communications to be overlapped by computations and reduces the idle times resulting from the synchronizations. So in the asynchronous mode, our two-stage algorithm uses asynchronous outer iterations and asynchronous communications between clusters. The communications (i.e. lines~\ref{send} and~\ref{recv} in Figure~\ref{alg:01}) are performed by message passing using MPI non-blocking communication routines. The convergence of the asynchronous iterations is detected when all clusters have locally converged
+\begin{equation}
+k\geq\MIM\mbox{~or~}\|x_\ell^{k+1}-x_\ell^k\|_{\infty }\leq\TOLM,
+\label{eq:04}
+\end{equation}
+where $\MIM$ is the maximum number of outer iterations and $\TOLM$ is the tolerance threshold for the two-stage algorithm.
+
+The second two-stage algorithm is based on synchronous outer iterations. We propose to use the Krylov iteration based on residual minimization to improve the slow convergence of the multisplitting methods. In this case, a $n\times s$ matrix $S$ is set using solutions issued from the inner iteration
+\begin{equation}
+S=[x^1,x^2,\ldots,x^s],~s\ll n.
+\label{eq:05}
+\end{equation}
+At each $s$ outer iterations, the algorithm computes a new approximation $\tilde{x}=S\alpha$ which minimizes the residual
+\begin{equation}
+\min_{\alpha\in\mathbb{R}^s}{\|b-AS\alpha\|_2}.
+\label{eq:06}
+\end{equation}
+The algorithm in Figure~\ref{alg:02} includes the procedure of the residual minimization and the outer iteration is restarted with a new approximation $\tilde{x}$ at every $s$ iterations. The least-squares problem~(\ref{eq:06}) is solved in parallel by all clusters using CGLS method~\cite{Hestenes52} such that $\MIC$ is the maximum number of iterations and $\TOLC$ is the tolerance threshold for this method (line~\ref{cgls} in Figure~\ref{alg:02}).
+
+\begin{figure}[t]
+%\begin{algorithm}[t]
+%\caption{Krylov two-stage method using block Jacobi multisplitting}
+\begin{algorithmic}[1]
+ \Input $A_\ell$ (sparse matrix), $b_\ell$ (right-hand side)
+ \Output $x_\ell$ (solution vector)\vspace{0.2cm}
+ \State Set the initial guess $x^0$
+ \For {$k=1,2,3,\ldots$ until convergence}
+ \State $c_\ell=b_\ell-\sum_{m\neq\ell}A_{\ell m}x_m^{k-1}$
+ \State $x^k_\ell=Solve_{gmres}(A_{\ell\ell},c_\ell,x^{k-1}_\ell,\MIG,\TOLG)$
+ \State $S_{\ell,k\mod s}=x_\ell^k$
+ \If{$k\mod s = 0$}
+ \State $\alpha = Solve_{cgls}(AS,b,\MIC,\TOLC)$\label{cgls}
+ \State $\tilde{x_\ell}=S_\ell\alpha$
+ \State Send $\tilde{x_\ell}$ to neighboring clusters
+ \Else
+ \State Send $x_\ell^k$ to neighboring clusters
+ \EndIf
+ \State Receive $\{x_m^k\}_{m\neq\ell}$ from neighboring clusters
+ \EndFor
+\end{algorithmic}
+\caption{Krylov two-stage method using block Jacobi multisplitting}
+\label{alg:02}
+%\end{algorithm}
+\end{figure}
+
+\subsection{Simulation of two-stage methods using SimGrid framework}
+\label{sec:04.02}
+
+One of our objectives when simulating the application in Simgrid is, as in real life, to get accurate results (solutions of the problem) but also ensure the test reproducibility under the same conditions. According our experience, very few modifications are required to adapt a MPI program to run in Simgrid simulator using SMPI (Simulator MPI).The first modification is to include SMPI libraries and related header files (smpi.h). The second and important modification is to eliminate all global variables in moving them to local subroutine or using a Simgrid selector called "runtime automatic switching" (smpi/privatize\_global\_variables). Indeed, global variables can generate side effects on runtime between the threads running in the same process, generated by the Simgrid to simulate the grid environment.The last modification on the MPI program pointed out for some cases, the review of the sequence of the MPI\_Isend, MPI\_Irecv and MPI\_Waitall instructions which might cause an infinite loop.
+
+
+\paragraph{Simgrid Simulator parameters}
+
+\begin{itemize}
+ \item hostfile: Hosts description file.
+ \item plarform: File describing the platform architecture : clusters (CPU power,
+\dots{}), intra cluster network description, inter cluster network (bandwidth bw,
+latency lat, \dots{}).
+ \item archi : Grid computational description (Number of clusters, Number of
+nodes/processors for each cluster).
+\end{itemize}
+
+
+In addition, the following arguments are given to the programs at runtime:
+
+\begin{itemize}
+ \item Maximum number of inner and outer iterations;
+ \item Inner and outer precisions;
+ \item Matrix size (N$_{x}$, N$_{y}$ and N$_{z}$);
+ \item Matrix diagonal value = 6.0;
+ \item Execution Mode: synchronous or asynchronous.
+\end{itemize}
+
+At last, note that the two solver algorithms have been executed with the Simgrid selector -cfg=smpi/running\_power which determine the computational power (here 19GFlops) of the simulator host machine.
+
+%%%%%%%%%%%%%%%%%%%%%%%%%
+%%%%%%%%%%%%%%%%%%%%%%%%%
+
+\section{Experimental Results}
+\label{sec:expe}
+
+
+\subsection{Setup study and Methodology}
+
+To conduct our study, we have put in place the following methodology
+which can be reused for any grid-enabled applications.
+
+\textbf{Step 1} : Choose with the end users the class of algorithms or
+the application to be tested. Numerical parallel iterative algorithms
+have been chosen for the study in this paper. \\
+
+\textbf{Step 2} : Collect the software materials needed for the
+experimentation. In our case, we have two variants algorithms for the
+resolution of three 3D-Poisson problem: (1) using the classical GMRES (Algo-1)(2) and the multisplitting method (Algo-2). In addition, Simgrid simulator has been chosen to simulate the behaviors of the
+distributed applications. Simgrid is running on the Mesocentre datacenter in Franche-Comte University but also in a virtual machine on a laptop. \\
+
+\textbf{Step 3} : Fix the criteria which will be used for the future
+results comparison and analysis. In the scope of this study, we retain
+in one hand the algorithm execution mode (synchronous and asynchronous)
+and in the other hand the execution time and the number of iterations of
+the application before obtaining the convergence. \\
+
+\textbf{Step 4 }: Setup up the different grid testbeds environment
+which will be simulated in the simulator tool to run the program. The
+following architecture has been configured in Simgrid : 2x16 - that is a
+grid containing 2 clusters with 16 hosts (processors/cores) each -, 4x8,
+4x16, 8x8 and 2x50. The network has been designed to operate with a
+bandwidth equals to 10Gbits (resp. 1Gbits/s) and a latency of 8E-6
+microseconds (resp. 5E-5) for the intra-clusters links (resp.
+inter-clusters backbone links). \\
+
+\textbf{Step 5}: Conduct an extensive and comprehensive testings
+within these configurations in varying the key parameters, especially
+the CPU power capacity, the network parameters and also the size of the
+input matrix. Note that some parameters should be fixed to be invariant to allow the
+comparison like some program input arguments. \\