]> AND Private Git Repository - rce2015.git/blobdiff - paper.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
DL : expé
[rce2015.git] / paper.tex
index 42f4b5d37762f3602b5c5ba46962b6e31f7ca74a..46ecc39896759d726aae43c489435194d4d27558 100644 (file)
--- a/paper.tex
+++ b/paper.tex
@@ -45,6 +45,8 @@
   \todo[color=blue!10,#1]{\sffamily\textbf{LZK:} #2}\xspace}
 \newcommand{\RCE}[2][inline]{%
   \todo[color=yellow!10,#1]{\sffamily\textbf{RCE:} #2}\xspace}
+\newcommand{\DL}[2][inline]{%
+    \todo[color=pink!10,#1]{\sffamily\textbf{DL:} #2}\xspace}
 
 \algnewcommand\algorithmicinput{\textbf{Input:}}
 \algnewcommand\Input{\item[\algorithmicinput]}
@@ -344,19 +346,18 @@ nodes/processors for each cluster).
 In addition, the following arguments are given to the programs at runtime:
 
 \begin{itemize}
-       \item maximum number of inner and outer iterations;
-       \item inner and outer precisions;
-       \item maximum number of the GMRES restarts in the Arnorldi process;
-       \item maximum number of iterations and the tolerance threshold in classical GMRES;
-       \item tolerance threshold for outer and inner-iterations;
-       \item matrix size (N$_{x}$, N$_{y}$ and N$_{z}$) respectively on $x, y, z$ axis;
-       \item matrix diagonal value is fixed to $6.0$ for synchronous Krylov multisplitting experiments and $6.2$ for asynchronous block Jacobi experiments; \RC{CE tu vérifies, je dis ca de tête}
-       \item matrix off-diagonal value;
-       \item execution mode: synchronous or asynchronous;
-       \RCE {C'est ok la liste des arguments du programme mais si Lilia ou toi pouvez preciser pour les  arguments pour CGLS ci dessous} \RC{Vu que tu n'as pas fait varier ce paramètre, on peut ne pas en parler}
-       \item Size of matrix S;
-       \item Maximum number of iterations and tolerance threshold for CGLS.
+       \item maximum number of inner iterations $\MIG$ and outer iterations $\MIM$,
+       \item inner precision $\TOLG$ and outer precision $\TOLM$,
+       \item matrix sizes of the 3D Poisson problem: N$_{x}$, N$_{y}$ and N$_{z}$ on axis $x$, $y$ and $z$ respectively,
+       \item matrix diagonal value is fixed to $6.0$ for synchronous Krylov multisplitting experiments and $6.2$ for asynchronous block Jacobi experiments,
+       \item matrix off-diagonal value is fixed to $-1.0$,
+       \item number of vectors in matrix $S$ (i.e. value of $s$),
+       \item maximum number of iterations $\MIC$ and precision $\TOLC$ for CGLS method,
+        \item maximum number of iterations and precision for the classical GMRES method,
+        \item maximum number of restarts for the Arnorldi process in GMRES method,
+       \item execution mode: synchronous or asynchronous.
 \end{itemize}
+\LZK{CE pourrais tu vérifier et confirmer les valeurs des éléments diag et off-diag de la matrice?}
 
 It should also be noticed that both solvers have been executed with the Simgrid selector \texttt{-cfg=smpi/running\_power} which determines the computational power (here 19GFlops) of the simulator host machine.
 
@@ -620,7 +621,7 @@ The results  of increasing  the network  bandwidth show  the improvement  of the
 performance  for   both  algorithms   by  reducing   the  execution   time  (see
 Figure~\ref{fig:04}). However,  in this  case, the Krylov  multisplitting method
 presents a better  performance in the considered bandwidth interval  with a gain
-of 40\% which is only around 24\% for classical GMRES.
+of $40\%$ which is only around $24\%$ for the classical GMRES.
 
 \subsubsection{Input matrix size impacts on performance}
 \ \\
@@ -632,27 +633,27 @@ of 40\% which is only around 24\% for classical GMRES.
  Network & N2 : bw=1Gbs - lat=5.10$^{-5}$ \\
  Input matrix size & N$_{x}$ = From 40 to 200\\ \hline
  \end{tabular}
-\caption{Input matrix size impact}
+\caption{Input matrix size impacts}
 \end{figure}
 
 
 \begin{figure} [ht!]
 \centering
 \includegraphics[width=100mm]{pb_size_impact_on_execution_time.pdf}
-\caption{Problem size impact on execution time}
+\caption{Problem size impacts on execution time}
 \label{fig:05}
 \end{figure}
 
-In these experiments, the input matrix size  has been set from N$_{x}$ = N$_{y}$
-= N$_{z}$ = 40 to 200 side elements  that is from 40$^{3}$ = 64.000 to 200$^{3}$
-= 8,000,000  points. Obviously, as  shown in Figure~\ref{fig:05},  the execution
+In these experiments, the input matrix size  has been set from $N_{x} = N_{y}
+= N_{z} = 40$ to $200$ side elements  that is from $40^{3} = 64.000$ to $200^{3}
+= 8,000,000$  points. Obviously, as  shown in Figure~\ref{fig:05},  the execution
 time for  both algorithms increases when  the input matrix size  also increases.
 But the interesting results are:
 \begin{enumerate}
-  \item the drastic increase (300 times) \RC{Je ne vois pas cela sur la figure}
+  \item the drastic increase ($300$ times) \RC{Je ne vois pas cela sur la figure}
 of the  number of  iterations needed  to reach the  convergence for  the classical
-GMRES algorithm when  the matrix size go beyond N$_{x}$=150;
-\item the  classical GMRES execution time  is almost the double  for N$_{x}$=140
+GMRES algorithm when  the matrix size go beyond $N_{x}=150$;
+\item the  classical GMRES execution time  is almost the double  for $N_{x}=140$
   compared with the Krylov multisplitting method.
 \end{enumerate}
 
@@ -661,7 +662,7 @@ targeted environment for the application deployment when focusing on the problem
 size scale up.  It  should be noticed that the same test has  been done with the
 grid 2x16 leading to the same conclusion.
 
-\subsubsection{CPU Power impact on performance}
+\subsubsection{CPU Power impacts on performance}
 
 \begin{figure} [ht!]
 \centering
@@ -671,51 +672,53 @@ grid 2x16 leading to the same conclusion.
  Network & N2 : bw=1Gbs - lat=5.10$^{-5}$ \\ %\hline
  Input matrix size & N$_{x}$ = 150 x 150 x 150\\ \hline
  \end{tabular}
-\caption{CPU Power impact}
+\caption{CPU Power impacts}
 \end{figure}
 
 \begin{figure} [ht!]
 \centering
 \includegraphics[width=100mm]{cpu_power_impact_on_execution_time.pdf}
-\caption{CPU Power impact on execution time}
+\caption{CPU Power impacts on execution time}
 \label{fig:06}
 \end{figure}
 
 Using the Simgrid  simulator flexibility, we have tried to  determine the impact
 on the  algorithms performance in  varying the CPU  power of the  clusters nodes
-from 1  to 19 GFlops.  The outputs  depicted in Figure~\ref{fig:06}  confirm the
-performance gain,  around 95\% for  both of the  two methods, after  adding more
+from $1$ to $19$ GFlops.  The outputs  depicted in Figure~\ref{fig:06}  confirm the
+performance gain,  around $95\%$ for  both of the  two methods, after  adding more
 powerful CPU.
 
+\DL{il faut une conclusion sur ces tests : ils confirment les résultats déjà
+obtenus en grandeur réelle. Donc c'est une aide précieuse pour les dev. Pas
+besoin de déployer sur une archi réelle}
+
 \subsection{Comparing GMRES in native synchronous mode and the multisplitting algorithm in asynchronous mode}
 
 The previous paragraphs  put in evidence the interests to  simulate the behavior
-of the application before any deployment in a real environment.  We have focused
-the study on analyzing the performance  in varying the key factors impacting the
-results. The study compares the performance  of the two proposed algorithms both
-in  \textit{synchronous mode  }. In  this section,  following the  same previous
-methodology, the  goal is  to demonstrate the  efficiency of  the multisplitting
-method in \textit{ asynchronous mode}  compared with the classical GMRES staying
-in \textit{synchronous mode}.
-
-Note that the interest of using the asynchronous mode for data exchange
-is mainly, in opposite of the synchronous mode, the non-wait aspects of
-the current computation after a communication operation like sending
-some data between nodes. Each processor can continue their local
-calculation without waiting for the end of the communication. Thus, the
-asynchronous may theoretically reduce the overall execution time and can
-improve the algorithm performance.
-
-As stated supra, Simgrid simulator tool has been used to prove the
-efficiency of the multisplitting in asynchronous mode and to find the
-best combination of the grid resources (CPU, Network, input matrix size,
-\ldots ) to get the highest \textit{"relative gain"} (exec\_time$_{GMRES}$ / exec\_time$_{multisplitting}$) in comparison with the classical GMRES time.
-
-
-The test conditions are summarized in the table below : \\
+of  the application  before  any  deployment in  a  real  environment.  In  this
+section, following  the same previous  methodology, our  goal is to  compare the
+efficiency of the multisplitting method  in \textit{ asynchronous mode} with the
+classical GMRES in \textit{synchronous mode}.
 
-% environment
-\begin{footnotesize}
+The  interest of  using  an asynchronous  algorithm  is that  there  is no  more
+synchronization. With  geographically distant  clusters, this may  be essential.
+In  this case,  each  processor can  compute its  iteration  freely without  any
+synchronization  with   the  other   processors.  Thus,  the   asynchronous  may
+theoretically reduce  the overall execution  time and can improve  the algorithm
+performance.
+
+\RC{la phrase suivante est bizarre, je ne comprends pas pourquoi elle vient ici}
+As stated before, the Simgrid simulator tool has been successfully used to show
+the efficiency of  the multisplitting in asynchronous mode and  to find the best
+combination of the grid resources (CPU,  Network, input matrix size, \ldots ) to
+get    the   highest    \textit{"relative    gain"}   (exec\_time$_{GMRES}$    /
+exec\_time$_{multisplitting}$) in comparison with the classical GMRES time.
+
+
+The test conditions are summarized in the table below: \\
+
+\begin{figure} [ht!]
+\centering
 \begin{tabular}{r c }
  \hline
  Grid & 2x50 totaling 100 processors\\ %\hline
@@ -725,15 +728,17 @@ The test conditions are summarized in the table below : \\
  Input matrix size & N$_{x}$ = From 62 to 150\\ %\hline
  Residual error precision & 10$^{-5}$ to 10$^{-9}$\\ \hline \\
  \end{tabular}
-\end{footnotesize}
+\end{figure}
 
-Again, comprehensive and extensive tests have been conducted varying the
-CPU power and the network parameters (bandwidth and latency) in the
-simulator tool with different problem size. The relative gains greater
-than 1 between the two algorithms have been captured after each step of
-the test. Table 7 below has recorded the best grid configurations
-allowing the multisplitting method execution time more performant 2.5 times than
-the classical GMRES execution and convergence time. The experimentation has demonstrated the relative multisplitting algorithm tolerance when using a low speed network that we encounter usually with distant clusters thru the internet.
+Again,  comprehensive and  extensive tests  have been  conducted with  different
+parameters as  the CPU power, the  network parameters (bandwidth and  latency)
+and with different problem size. The  relative gains greater than $1$  between the
+two algorithms have  been captured after  each step  of the test.   In
+Figure~\ref{table:01}  are  reported the  best  grid  configurations allowing
+the  multisplitting method to  be more than  $2.5$ times faster  than the
+classical  GMRES.  These  experiments also  show the  relative tolerance  of the
+multisplitting algorithm when using a low speed network as usually observed with
+geographically distant clusters through the internet.
 
 % use the same column width for the following three tables
 \newlength{\mytablew}\settowidth{\mytablew}{\footnotesize\np{E-11}}
@@ -744,14 +749,12 @@ the classical GMRES execution and convergence time. The experimentation has demo
     \end{tabular}}
 
 
-\begin{table}[!t]
-  \centering
+\begin{figure}[!t]
+\centering
+%\begin{table}
 %  \caption{Relative gain of the multisplitting algorithm compared with the classical GMRES}
 %  \label{"Table 7"}
-Table 7. Relative gain of the multisplitting algorithm compared with
-the classical GMRES \\
-
-  \begin{mytable}{11}
+ \begin{mytable}{11}
     \hline
     bandwidth (Mbit/s)
     & 5     & 5     & 5         & 5         & 5  & 50        & 50        & 50        & 50        & 50 \\
@@ -772,7 +775,11 @@ the classical GMRES \\
     & 2.52     & 2.55     & 2.52     & 2.57     & 2.54 & 2.53     & 2.51     & 2.58     & 2.55     & 2.54 \\
     \hline
   \end{mytable}
-\end{table}
+%\end{table}
+ \caption{Relative gain of the multisplitting algorithm compared with the classical GMRES}
+ \label{table:01}
+\end{figure}
+
 
 \section{Conclusion}
 CONCLUSION