-In these experiments, the input matrix size has been set from $N_{x} = N_{y}
-= N_{z} = 40$ to $200$ side elements that is from $40^{3} = 64.000$ to $200^{3}
-= 8,000,000$ points. Obviously, as shown in Figure~\ref{fig:05}, the execution
-time for both algorithms increases when the input matrix size also increases.
-But the interesting results are:
-\begin{enumerate}
- \item the drastic increase ($10$ times) of the number of iterations needed to
- reach the convergence for the classical GMRES algorithm when the matrix size
- go beyond $N_{x}=150$; \RC{C'est toujours pas clair... ok le nommbre d'itérations est 10 fois plus long mais la suite de la phrase ne veut rien dire}
-\item the classical GMRES execution time is almost the double for $N_{x}=140$
- compared with the Krylov multisplitting method.
-\end{enumerate}
-
-These findings may help a lot end users to setup the best and the optimal
-targeted environment for the application deployment when focusing on the problem
-size scale up. It should be noticed that the same test has been done with the
-grid 2x16 leading to the same conclusion.
-
-\subsubsection{CPU Power impacts on performance}
-
-\begin{table} [ht!]
-\centering
-\begin{tabular}{r c }
- \hline
- Grid architecture & 2x16\\ %\hline
- Network & N2 : bw=1Gbs - lat=5.10$^{-5}$ \\ %\hline
- Input matrix size & $N_{x} = 150 \times 150 \times 150$\\ \hline
- \end{tabular}
-\caption{Test conditions: CPU Power impacts}
-\label{tab:06}
-\end{table}
+\subsubsection{CPU power impacts on performances\\}
+Using the SimGrid simulator flexibility, we have tried to determine the impact of the CPU power of the processors in the different clusters on performances of both algorithms. We have varied the CPU power from $1$GFlops to $19$GFlops. The simulation is conducted in a grid of 2$\times$16 processors interconnected by the network $N2$ (see Table~\ref{tab:01}) to solve a 3D Poisson problem of size $150^3$. The results depicted in Figure~\ref{fig:06} confirm the performance gain, about $95\%$ for both algorithms, after improving the CPU power of processors.