X-Git-Url: https://bilbo.iut-bm.univ-fcomte.fr/and/gitweb/rce2015.git/blobdiff_plain/01a38307eb4e07ea93979965602956371d2a04aa..4a76c4a8fcc10af92df927a0bebb9a1793d7e1aa:/paper.tex?ds=inline diff --git a/paper.tex b/paper.tex index 5b8ada3..0b7dc1d 100644 --- a/paper.tex +++ b/paper.tex @@ -21,7 +21,6 @@ \usepackage{algpseudocode} %\usepackage{amsthm} \usepackage{graphicx} -\usepackage[american]{babel} % Extension pour les liens intra-documents (tagged PDF) % et l'affichage correct des URL (commande \url{http://example.com}) %\usepackage{hyperref} @@ -75,23 +74,26 @@ analysis of simulated grid-enabled numerical iterative algorithms} %\itshape{\journalnamelc}\footnotemark[2]} -\author{ Charles Emile Ramamonjisoa and - David Laiymani and - Arnaud Giersch and - Lilia Ziane Khodja and - Raphaël Couturier +\author{Charles Emile Ramamonjisoa\affil{1}, + David Laiymani\affil{1}, + Arnaud Giersch\affil{1}, + Lilia Ziane Khodja\affil{2} and + Raphaël Couturier\affil{1} } \address{ - \centering - Femto-ST Institute - DISC Department\\ - Université de Franche-Comté\\ - Belfort\\ - Email: \email{{raphael.couturier,arnaud.giersch,david.laiymani,charles.ramamonjisoa}@univ-fcomte.fr} + \affilnum{1}% + Femto-ST Institute, DISC Department, + University of Franche-Comté, + Belfort, France. + Email:~\email{{charles.ramamonjisoa,david.laiymani,arnaud.giersch,raphael.couturier}@univ-fcomte.fr}\break + \affilnum{2} + Department of Aerospace \& Mechanical Engineering, + Non Linear Computational Mechanics, + University of Liege, Liege, Belgium. + Email:~\email{l.zianekhodja@ulg.ac.be} } -%% Lilia Ziane Khodja: Department of Aerospace \& Mechanical Engineering\\ Non Linear Computational Mechanics\\ University of Liege\\ Liege, Belgium. Email: l.zianekhodja@ulg.ac.be - \begin{abstract} The behavior of multi-core applications is always a challenge to predict, especially with a new architecture for which no experiment has been performed. With some applications, it is difficult, if not impossible, to build @@ -134,7 +136,7 @@ are often very important. So, in this context it is difficult to optimize a given application for a given architecture. In this way and in order to reduce the access cost to these computing resources it seems very interesting to use a simulation environment. The advantages are numerous: development life cycle, -code debugging, ability to obtain results quickly~\ldots. In counterpart, the simulation results need to be consistent with the real ones. +code debugging, ability to obtain results quickly\dots{} In counterpart, the simulation results need to be consistent with the real ones. In this paper we focus on a class of highly efficient parallel algorithms called \emph{iterative algorithms}. The parallel scheme of iterative methods is quite @@ -235,7 +237,7 @@ for the asynchronous scheme (this number depends depends on the delay of the messages). Note that, it is not the case in the synchronous mode where the number of iterations is the same than in the sequential mode. In this way, the set of the parameters of the platform (number of nodes, power of nodes, -inter and intra clusters bandwidth and latency \ldots) and of the +inter and intra clusters bandwidth and latency, \ldots) and of the application can drastically change the number of iterations required to get the convergence. It follows that asynchronous iterative algorithms are difficult to optimize since the financial and deployment costs on large scale multi-core @@ -246,7 +248,8 @@ by simulation are in accordance with reality i.e. of the same order of magnitude. To our knowledge, there is no study on this problematic. \section{SimGrid} - \label{sec:simgrid} +\label{sec:simgrid} +SimGrid~\cite{SimGrid,casanova+legrand+quinson.2008.simgrid,casanova+giersch+legrand+al.2014.versatile} is a discrete event simulation framework to study the behavior of large-scale distributed computing platforms as Grids, Peer-to-Peer systems, Clouds and High Performance Computation systems. It is widely used to simulate and evaluate heuristics, prototype applications or even assess legacy MPI applications. It is still actively developed by the scientific community and distributed as an open source software. %%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%% @@ -270,7 +273,7 @@ where $x_\ell$ are sub-vectors of the solution $x$, $b_\ell$ are the sub-vectors A_{\ell\ell} x_\ell = c_\ell,\mbox{~for~}\ell=1,\ldots,L, \label{eq:03} \end{equation} -where right-hand sides $c_\ell=b_\ell-\sum_{m\neq\ell}A_{\ell m}x_m$ are computed using the shared vectors $x_m$. In this paper, we use the well-known iterative method GMRES ({\it Generalized Minimal RESidual})~\cite{saad86} as an inner iteration to approximate the solutions of the different splittings arising from the block Jacobi multisplitting of matrix $A$. The algorithm in Figure~\ref{01} shows the main key points of our block Jacobi two-stage method executed by a cluster of processors. In line~\ref{solve}, the linear sub-system~(\ref{eq:03}) is solved in parallel using GMRES method where $\MIG$ and $\TOLG$ are the maximum number of inner iterations and the tolerance threshold for GMRES respectively. The convergence of the two-stage multisplitting methods, based on synchronous or asynchronous iterations, has been studied by many authors for example~\cite{Bru95,bahi07}. +where right-hand sides $c_\ell=b_\ell-\sum_{m\neq\ell}A_{\ell m}x_m$ are computed using the shared vectors $x_m$. In this paper, we use the well-known iterative method GMRES ({\it Generalized Minimal RESidual})~\cite{saad86} as an inner iteration to approximate the solutions of the different splittings arising from the block Jacobi multisplitting of matrix $A$. The algorithm in Figure~\ref{alg:01} shows the main key points of our block Jacobi two-stage method executed by a cluster of processors. In line~\ref{solve}, the linear sub-system~(\ref{eq:03}) is solved in parallel using GMRES method where $\MIG$ and $\TOLG$ are the maximum number of inner iterations and the tolerance threshold for GMRES respectively. The convergence of the two-stage multisplitting methods, based on synchronous or asynchronous iterations, has been studied by many authors for example~\cite{Bru95,bahi07}. \begin{figure}[t] %\begin{algorithm}[t] @@ -386,8 +389,6 @@ In addition, the following arguments are given to the programs at runtime: \item maximum number of restarts for the Arnorldi process in GMRES method, \item execution mode: synchronous or asynchronous. \end{itemize} -\LZK{CE pourrais tu vérifier et confirmer les valeurs des éléments diag et off-diag de la matrice?} -\RCE{oui, les valeurs de diag et off-diag donnees sont ok} It should also be noticed that both solvers have been executed with the Simgrid selector \texttt{-cfg=smpi/running\_power} which determines the computational power (here 19GFlops) of the simulator host machine. @@ -496,7 +497,7 @@ and between distant clusters. This parameter is application dependent. In the scope of this paper, our first objective is to analyze when the Krylov Multisplitting method has better performance than the classical GMRES -method. With a synchronous iterative method, better performance mean a +method. With a synchronous iterative method, better performance means a smaller number of iterations and execution time before reaching the convergence. For a systematic study, the experiments should figure out that, for various grid parameters values, the simulator will confirm the targeted outcomes, @@ -521,7 +522,7 @@ architectures and scaling up the input matrix size} Input matrix size & N$_{x}$ x N$_{y}$ x N$_{z}$ =150 x 150 x 150\\ %\hline - & N$_{x}$ x N$_{y}$ x N$_{z}$ =170 x 170 x 170 \\ \hline \end{tabular} -\caption{Test conditions: Various grid configurations with the input matix size N$_{x}$=150 or N$_{x}$=170 \RC{je ne comprends pas la légende... Ca ne serait pas plutot Characteristics of cluster (mais il faudrait lui donner un nom)}} +\caption{Test conditions: various grid configurations with the input matix size N$_{x}$=150 or N$_{x}$=170 \RC{N2 n'est pas défini..}\RC{Nx est défini, Ny? Nz?}} \label{tab:01} \end{center} \end{table} @@ -529,8 +530,6 @@ architectures and scaling up the input matrix size} -%\RCE{J'ai voulu mettre les tableaux des données mais je pense que c'est inutile et ça va surcharger} - In this section, we analyze the performance of algorithms running on various grid configurations (2x16, 4x8, 4x16 and 8x8). First, the results in Figure~\ref{fig:01} @@ -546,7 +545,7 @@ multisplitting method. \begin{center} \includegraphics[width=100mm]{cluster_x_nodes_nx_150_and_nx_170.pdf} \end{center} - \caption{Various grid configurations with the input matrix size N$_{x}$=150 and N$_{x}$=170} + \caption{Various grid configurations with the input matrix size N$_{x}$=150 and N$_{x}$=170\RC{idem}} \label{fig:01} \end{figure} @@ -556,7 +555,7 @@ grid architectures, even with the same number of processors (for example, 2x16 and 4x8). We can observ the low sensitivity of the Krylov multisplitting method (compared with the classical GMRES) when scaling up the number of the processors in the grid: in average, the GMRES (resp. Multisplitting) algorithm performs -$40\%$ better (resp. $48\%$) when running from 2x16=32 to 8x8=64 processors. +$40\%$ better (resp. $48\%$) when running from 2x16=32 to 8x8=64 processors. \RC{pas très clair, c'est pas précis de dire qu'un algo perform mieux qu'un autre, selon quel critère?} \subsubsection{Running on two different inter-clusters network speeds \\} @@ -569,16 +568,15 @@ $40\%$ better (resp. $48\%$) when running from 2x16=32 to 8x8=64 processors. - & N2 : bw=1Gbs-lat=5.10$^{-5}$ \\ Input matrix size & N$_{x}$ x N$_{y}$ x N$_{z}$ =150 x 150 x 150\\ \hline \end{tabular} -\caption{Test conditions: Grid 2x16 and 4x8 - Networks N1 vs N2} +\caption{Test conditions: grid 2x16 and 4x8 with networks N1 vs N2} \label{tab:02} \end{center} \end{table} These experiments compare the behavior of the algorithms running first on a -speed inter-cluster network (N1) and also on a less performant network (N2). -Figure~\ref{fig:02} shows that end users will gain to reduce the execution time -for both algorithms in using a grid architecture like 4x16 or 8x8: the -performance was increased by a factor of $2$. The results depict also that when +speed inter-cluster network (N1) and also on a less performant network (N2). \RC{Il faut définir cela avant...} +Figure~\ref{fig:02} shows that end users will reduce the execution time +for both algorithms when using a grid architecture like 4x16 or 8x8: the reduction is about $2$. The results depict also that when the network speed drops down (variation of 12.5\%), the difference between the two Multisplitting algorithms execution times can reach more than 25\%. %\RC{c'est pas clair : la différence entre quoi et quoi?} %\DL{pas clair} @@ -589,7 +587,7 @@ the network speed drops down (variation of 12.5\%), the difference between t \begin{figure} [ht!] \centering \includegraphics[width=100mm]{cluster_x_nodes_n1_x_n2.pdf} -\caption{Grid 2x16 and 4x8 - Networks N1 vs N2} +\caption{Grid 2x16 and 4x8 with networks N1 vs N2} \label{fig:02} \end{figure} %\end{wrapfigure} @@ -605,7 +603,7 @@ the network speed drops down (variation of 12.5\%), the difference between t Network & N1 : bw=1Gbs \\ %\hline Input matrix size & N$_{x}$ x N$_{y}$ x N$_{z}$ =150 x 150 x 150\\ \hline \end{tabular} -\caption{Test conditions: Network latency impacts} +\caption{Test conditions: network latency impacts} \label{tab:03} \end{table} @@ -619,15 +617,16 @@ the network speed drops down (variation of 12.5\%), the difference between t \end{figure} -According to the results of Figure~\ref{fig:03}, a degradation of the network -latency from $8.10^{-6}$ to $6.10^{-5}$ implies an absolute time increase of more -than $75\%$ (resp. $82\%$) of the execution for the classical GMRES (resp. Krylov -multisplitting) algorithm. In addition, it appears that the Krylov -multisplitting method tolerates more the network latency variation with a less -rate increase of the execution time. Consequently, in the worst case -($lat=6.10^{-5 }$), the execution time for GMRES is almost the double than the -time of the Krylov multisplitting, even though, the performance was on the same -order of magnitude with a latency of $8.10^{-6}$. +According to the results of Figure~\ref{fig:03}, a degradation of the network +latency from $8.10^{-6}$ to $6.10^{-5}$ implies an absolute time increase of +more than $75\%$ (resp. $82\%$) of the execution for the classical GMRES +(resp. Krylov multisplitting) algorithm. In addition, it appears that the +Krylov multisplitting method tolerates more the network latency variation with a +less rate increase of the execution time.\RC{Les 2 précédentes phrases me + semblent en contradiction....} Consequently, in the worst case ($lat=6.10^{-5 +}$), the execution time for GMRES is almost the double than the time of the +Krylov multisplitting, even though, the performance was on the same order of +magnitude with a latency of $8.10^{-6}$. \subsubsection{Network bandwidth impacts on performance} \ \\ @@ -639,7 +638,7 @@ order of magnitude with a latency of $8.10^{-6}$. Network & N1 : bw=1Gbs - lat=5.10$^{-5}$ \\ %\hline Input matrix size & N$_{x}$ x N$_{y}$ x N$_{z}$ =150 x 150 x 150\\ \hline \\ \end{tabular} -\caption{Test conditions: Network bandwidth impacts} +\caption{Test conditions: Network bandwidth impacts\RC{Qu'est ce qui varie ici? Il n'y a pas de variation dans le tableau}} \label{tab:04} \end{table} @@ -685,9 +684,9 @@ In these experiments, the input matrix size has been set from $N_{x} = N_{y} time for both algorithms increases when the input matrix size also increases. But the interesting results are: \begin{enumerate} - \item the drastic increase ($10$ times) \RC{Je ne vois pas cela sur la figure} -\RCE{Corrige} of the number of iterations needed to reach the convergence for the classical -GMRES algorithm when the matrix size go beyond $N_{x}=150$; + \item the drastic increase ($10$ times) of the number of iterations needed to + reach the convergence for the classical GMRES algorithm when the matrix size + go beyond $N_{x}=150$; \RC{C'est toujours pas clair... ok le nommbre d'itérations est 10 fois plus long mais la suite de la phrase ne veut rien dire} \item the classical GMRES execution time is almost the double for $N_{x}=140$ compared with the Krylov multisplitting method. \end{enumerate} @@ -824,11 +823,10 @@ geographically distant clusters through the internet. CONCLUSION -\section*{Acknowledgment} - +%\section*{Acknowledgment} +\ack This work is partially funded by the Labex ACTION program (contract ANR-11-LABX-01-01). - \bibliographystyle{wileyj} \bibliography{biblio}