X-Git-Url: https://bilbo.iut-bm.univ-fcomte.fr/and/gitweb/rce2015.git/blobdiff_plain/18a590b4593843d38f5012c20a06f000388301cf..HEAD:/paper.tex?ds=inline diff --git a/paper.tex b/paper.tex index b9d11d4..bc1b1b4 100644 --- a/paper.tex +++ b/paper.tex @@ -1,4 +1,4 @@ -\documentclass[times]{cpeauth} + \documentclass[times]{cpeauth} \usepackage{moreverb} @@ -21,10 +21,11 @@ \usepackage{algpseudocode} %\usepackage{amsthm} \usepackage{graphicx} -\usepackage[american]{babel} % Extension pour les liens intra-documents (tagged PDF) % et l'affichage correct des URL (commande \url{http://example.com}) %\usepackage{hyperref} +\usepackage{multirow} + \usepackage{url} \DeclareUrlCommand\email{\urlstyle{same}} @@ -71,48 +72,50 @@ -\begin{document} \RCE{Titre a confirmer.} \title{Comparative performance -analysis of simulated grid-enabled numerical iterative algorithms} +\begin{document} +\title{Grid-enabled simulation of large-scale linear iterative solvers} %\itshape{\journalnamelc}\footnotemark[2]} -\author{ Charles Emile Ramamonjisoa and - David Laiymani and - Arnaud Giersch and - Lilia Ziane Khodja and - Raphaël Couturier +\author{Charles Emile Ramamonjisoa\affil{1}, + Lilia Ziane Khodja\affil{2}, + David Laiymani\affil{1}, + Raphaël Couturier\affil{1} and + Arnaud Giersch\affil{1} } \address{ - \centering - Femto-ST Institute - DISC Department\\ - Université de Franche-Comté\\ - Belfort\\ - Email: \email{{raphael.couturier,arnaud.giersch,david.laiymani,charles.ramamonjisoa}@univ-fcomte.fr} + \affilnum{1}% + Femto-ST Institute, DISC Department, + University of Franche-Comté, + Belfort, France. + Email:~\email{{charles.ramamonjisoa,david.laiymani,raphael.couturier,arnaud.giersch}@univ-fcomte.fr}\break + \affilnum{2} + Department of Aerospace \& Mechanical Engineering, + Non Linear Computational Mechanics, + University of Liege, Liege, Belgium. + Email:~\email{l.zianekhodja@ulg.ac.be} } -%% Lilia Ziane Khodja: Department of Aerospace \& Mechanical Engineering\\ Non Linear Computational Mechanics\\ University of Liege\\ Liege, Belgium. Email: l.zianekhodja@ulg.ac.be - -\begin{abstract} The behavior of multi-core applications is always a challenge -to predict, especially with a new architecture for which no experiment has been -performed. With some applications, it is difficult, if not impossible, to build -accurate performance models. That is why another solution is to use a simulation -tool which allows us to change many parameters of the architecture (network -bandwidth, latency, number of processors) and to simulate the execution of such -applications. The main contribution of this paper is to show that the use of a -simulation tool (here we have decided to use the SimGrid toolkit) can really -help developpers to better tune their applications for a given multi-core -architecture. - -In particular we focus our attention on two parallel iterative algorithms based -on the Multisplitting algorithm and we compare them to the GMRES algorithm. -These algorithms are used to solve linear systems. Two different variants of -the Multisplitting are studied: one using synchronoous iterations and another -one with asynchronous iterations. For each algorithm we have simulated -different architecture parameters to evaluate their influence on the overall -execution time. The obtain simulated results confirm the real results -previously obtained on different real multi-core architectures and also confirm -the efficiency of the asynchronous multisplitting algorithm compared to the -synchronous GMRES method. +\begin{abstract} %% The behavior of multi-core applications is always a challenge +%% to predict, especially with a new architecture for which no experiment has been +%% performed. With some applications, it is difficult, if not impossible, to build +%% accurate performance models. That is why another solution is to use a simulation +%% tool which allows us to change many parameters of the architecture (network +%% bandwidth, latency, number of processors) and to simulate the execution of such +%% applications. The main contribution of this paper is to show that the use of a +%% simulation tool (here we have decided to use the SimGrid toolkit) can really +%% help developers to better tune their applications for a given multi-core +%% architecture. + +%% In this paper we focus our attention on the simulation of iterative algorithms to solve sparse linear systems on large clusters. We study the behavior of the widely used GMRES algorithm and two different variants of the Multisplitting algorithms: one using synchronous iterations and another one with asynchronous iterations. +%% For each algorithm we have simulated +%% different architecture parameters to evaluate their influence on the overall +%% execution time. +%% The simulations confirm the real results previously obtained on different real multi-core architectures and also confirm the efficiency of the asynchronous Multisplitting algorithm on distant clusters compared to the synchronous GMRES algorithm. + +The behavior of multi-core applications always proves quite challenging to predict, especially with a new architecture for which no experiment has yet been performed. With some applications, it is difficult, if not impossible, to build accurate performance models. That is why another solution is to use a simulation tool which allows us to change many parameters of the architecture (network bandwidth, latency, number of processors) and to simulate the execution of such applications. + +In this paper we focus on the simulation of iterative algorithms to solve sparse linear systems. We study the behavior of the GMRES algorithm and two different variants of the multisplitting algorithms: using synchronous or asynchronous iterations. For each algorithm we have simulated different architecture parameters to evaluate their influence on the overall execution time. The simulations confirm the real results previously obtained on different real multi-core architectures and also confirm the efficiency of the asynchronous multisplitting algorithm on distant clusters compared to the GMRES algorithm. \end{abstract} @@ -130,11 +133,11 @@ complex parallel applications operating on a large amount of data. Unfortunately, users (industrials or scientists), who need such computational resources, may not have an easy access to such efficient architectures. The cost of using the platform and/or the cost of testing and deploying an application -are often very important. So, in this context it is difficult to optimize a +are often very important. So, in this context, it is difficult to optimize a given application for a given architecture. In this way and in order to reduce the access cost to these computing resources it seems very interesting to use a -simulation environment. The advantages are numerous: development life cycle, -code debugging, ability to obtain results quickly~\ldots. In counterpart, the simulation results need to be consistent with the real ones. +simulation environment. The advantages are numerous: life cycle development, +code debugging, ability to obtain results quickly\dots{} In return, the simulation results need to be consistent with the real ones. In this paper we focus on a class of highly efficient parallel algorithms called \emph{iterative algorithms}. The parallel scheme of iterative methods is quite @@ -145,88 +148,248 @@ data dependencies to/from its neighbors and to iterate this process until the convergence of the method. Several well-known studies demonstrate the convergence of these algorithms~\cite{BT89,bahi07}. In this processing mode a task cannot begin a new iteration while it has not received data dependencies -from its neighbors. We say that the iteration computation follows a +from its neighbors. The iteration computation is said to follow a \textit{synchronous} scheme. In the asynchronous scheme a task can compute a new iteration without having to wait for the data dependencies coming from its -neighbors. Both communication and computations are \textit{asynchronous} +neighbors. Both communications and computations are \textit{asynchronous} inducing that there is no more idle time, due to synchronizations, between two iterations~\cite{bcvc06:ij}. This model presents some advantages and drawbacks -that we detail in section~\ref{sec:asynchro} but even if the number of +that we detail in Section~\ref{sec:asynchro}. Even if the number of iterations required to converge is generally greater than for the synchronous case, it appears that the asynchronous iterative scheme can significantly reduce overall execution times by suppressing idle times due to synchronizations~(see~\cite{bahi07} for more details). -Nevertheless, in both cases (synchronous or asynchronous) it is very time -consuming to find optimal configuration and deployment requirements for a given +Nevertheless, in both cases (synchronous or asynchronous) it is extremely time +consuming to find optimal configurations and deployment requirements for a given application on a given multi-core architecture. Finding good resource allocations policies under varying CPU power, network speeds and loads is very challenging and labor intensive~\cite{Calheiros:2011:CTM:1951445.1951450}. This problematic is even more difficult for the asynchronous scheme where a small -parameter variation of the execution platform can lead to very different numbers -of iterations to reach the converge and so to very different execution times. In -this challenging context we think that the use of a simulation tool can greatly -leverage the possibility of testing various platform scenarios. - -The main contribution of this paper is to show that the use of a simulation tool -(i.e. the SimGrid toolkit~\cite{SimGrid}) in the context of real parallel -applications (i.e. large linear system solvers) can help developers to better -tune their application for a given multi-core architecture. To show the validity -of this approach we first compare the simulated execution of the multisplitting -algorithm with the GMRES (Generalized Minimal Residual) -solver~\cite{saad86} in synchronous mode. The obtained results on different -simulated multi-core architectures confirm the real results previously obtained -on non simulated architectures. We also confirm the efficiency of the -asynchronous multisplitting algorithm compared to the synchronous GMRES. In -this way and with a simple computing architecture (a laptop) SimGrid allows us -to run a test campaign of a real parallel iterative applications on +parameter variation of the execution platform and of the application data can +lead to very different numbers of iterations to reach the convergence and consequently to +very different execution times. In this challenging context we think that the +use of a simulation tool can greatly leverage the possibility of testing various +platform scenarios. + +The {\bf main contribution of this paper} is to show that the use of a +simulation tool (i.e. the SimGrid toolkit~\cite{SimGrid}) in the context of real +parallel applications (i.e. large linear system solvers) can help developers to +better tune their applications for a given multi-core architecture. To show the +validity of this approach we first compare the simulated execution of the Krylov +multisplitting algorithm with the GMRES (Generalized Minimal RESidual) +solver~\cite{saad86} in synchronous mode. The simulation results allow us to +determine which method to choose for a given multi-core architecture. +Moreover, the obtained results on different simulated multi-core architectures +confirm the real results previously obtained on real physical architectures. +More precisely the simulated results are in accordance (i.e. with the same order +of magnitude) with the works presented in~\cite{couturier15}, which show that +the synchronous Krylov multisplitting method is more efficient than GMRES for large +scale clusters. Simulated results also confirm the efficiency of the +asynchronous multisplitting algorithm compared to the synchronous GMRES +especially in case of geographically distant clusters. + +Thus, with a simple computing architecture (a laptop) SimGrid allows us +to run a test campaign of real parallel iterative applications on different simulated multi-core architectures. To our knowledge, there is no related work on the large-scale multi-core simulation of a real synchronous and asynchronous iterative application. This paper is organized as follows. Section~\ref{sec:asynchro} presents the iteration model we use and more particularly the asynchronous scheme. In -section~\ref{sec:simgrid} the SimGrid simulation toolkit is presented. +Section~\ref{sec:simgrid} the SimGrid simulation toolkit is presented. Section~\ref{sec:04} details the different solvers that we use. Finally our -experimental results are presented in section~\ref{sec:expe} followed by some +experimental results are presented in Section~\ref{sec:expe} followed by some concluding remarks and perspectives. -\section{The asynchronous iteration model} +\section{The asynchronous iteration model and the motivations of our work} \label{sec:asynchro} -Asynchronous iterative methods have been studied for many years theoritecally and +Asynchronous iterative methods have been studied for many years both theoretically and practically. Many methods have been considered and convergence results have been proved. These methods can be used to solve, in parallel, fixed point problems -(i.e. problems for which the solution is $x^\star =f(x^\star)$. In practice, -asynchronous iterations methods can be used to solve, for example, linear and -non-linear systems of equations or optimization problems, interested readers are +(i.e. problems for which the solution is $x^\star =f(x^\star)$). In practice, +asynchronous iteration methods can be used to solve, for example, linear and +non-linear systems of equations or optimization problems. Interested readers are invited to read~\cite{BT89,bahi07}. Before using an asynchronous iterative method, the convergence must be -studied. Otherwise, the application is not ensure to reach the convergence. An +studied. Otherwise, there is no guarantee that the application will reach the convergence. An algorithm that supports both the synchronous or the asynchronous iteration model requires very few modifications to be able to be executed in both variants. In -practice, only the communications and convergence detection are different. In -the synchronous mode, iterations are synchronized whereas in the asynchronous -one, they are not. It should be noticed that non blocking communications can be +practice, only the communications management and the convergence detection are different. In +the synchronous mode, iterations are synchronized, whereas, in the asynchronous +one, they are not. It should be noticed that non-blocking communications can be used in both modes. Concerning the convergence detection, synchronous variants can use a global convergence procedure which acts as a global synchronization point. In the asynchronous model, the convergence detection is more tricky as it must not synchronize all the processors. Interested readers can consult~\cite{myBCCV05c,bahi07,ccl09:ij}. -\section{SimGrid} - \label{sec:simgrid} +The number of iterations required to reach the convergence is generally greater +for the asynchronous scheme (this number depends on the delay of the +messages). Note that, it is not the case in the synchronous mode where the +number of iterations is the same as in the sequential mode. Thus, the +set of the parameters of the platform (number of nodes, power of nodes, +inter and intra clusters bandwidth and latency,~\ldots) and of the +application can drastically change the number of iterations required to get the +convergence. It follows that asynchronous iterative algorithms are difficult to +optimize since the financial and deployment costs on large scale multi-core +architectures are often very important. So, prior to deployment and tests it +seems very promising to be able to simulate the behavior of asynchronous +iterative algorithms. The problematic is then to show that the results produced +by simulation are in accordance with reality (i.e. of the same order of +magnitude). To our knowledge, there is no study on this problematic. -%%%%%%%%%%%%%%%%%%%%%%%%% +\section{SimGrid} +\label{sec:simgrid} + +In the scope of this paper, we have chosen the SimGrid +toolkit~\cite{SimGrid,casanova+legrand+quinson.2008.simgrid,casanova+giersch+legrand+al.2014.versatile} +to simulate the behavior of parallel iterative linear solvers on different +computational grid configurations. In opposite to most of the simulators which +are stayed very application-oriented, the SimGrid framework is designed to study +the behavior of many large-scale distributed computing platforms as Grids, +Peer-to-Peer systems, Clouds or High Performance Computation systems. It is +still actively developed by the scientific community and distributed as an open +source software. + +SimGrid provides four user interfaces which can be convenient for different +distributed applications. In this paper we are interested on the SMPI +(Simulated MPI) user interface which implements about \np[\%]{80} of the MPI 2.0 +standard~\cite{bedaride+degomme+genaud+al.2013.toward}, and allows minor +modifications of the initial code (see Section~\ref{sec:04.02}). SMPI enables +the direct simulation of the execution, as in the real life, of an unmodified +MPI distributed application, and gets accurate results with the detailed +resources consumption. + +SimGrid simulator uses an XML input file describing the computational grid +resources: the number of clusters in the grid, the number of processors/cores in +each cluster, the detailed description of the intra and inter networks and the +list of the hosts in each cluster (see the details in +Section~\ref{sec:expe}). SimGrid employs a fluid model to simulate the use of +these resources along the program execution. This model produces accurate +results while still running relatively +fast~\cite{bedaride+degomme+genaud+al.2013.toward,velho+schnorr+casanova+al.2013.validity}. +During the simulation, the computations are really executed, but the communications +are intercepted and their execution time evaluated according to the parameters +of the simulated platform. It is also possible for SimGrid/SMPI to only keep the +duration of large computations by skipping them. Moreover, when applicable, the +application can be run by sharing some in-memory structures between the +simulated processes and thus allowing the use of very large-scale data. + +The choice of SimGrid/SMPI as a simulator tool in this study has been emphasized +by the results obtained by several studies to validate, in the real +environments, the behavior of different network models simulated in +SimGrid~\cite{velho+schnorr+casanova+al.2013.validity}. Other studies underline +the comparison between the real MPI application executions and the SimGrid/SMPI +ones~\cite{guermouche+renard.2010.first,clauss+stillwell+genaud+al.2011.single,bedaride+degomme+genaud+al.2013.toward}. These +works show the accuracy of SimGrid simulations compared to the executions on +real physical architectures. + +%% In the scope of this paper, the SimGrid toolkit~\cite{SimGrid,casanova+legrand+quinson.2008.simgrid,casanova+giersch+legrand+al.2014.versatile}, +%% an open source framework actively developed by its scientific community, has been chosen to simulate the behavior of iterative linear solvers in different computational grid configurations. SimGrid pretends to be non-specialized in opposite to some other simulators which stayed to be very specific oriented-application. One of the well-known SimGrid advantage is its SMPI (Simulated MPI) user interface. SMPI purpose is to execute by simulation in a similar way as in real life, an MPI distributed application and to get accurate results with the detailed resources +%% consumption.Several studies have demonstrated the accuracy of the simulation +%% compared with execution on real physical architectures. In addition of SMPI, +%% Simgrid provides other API which can be convienent for different distrbuted +%% applications: computational grid applications, High Performance Computing (HPC), +%% P2P but also clouds applications. In this paper we use the SMPI API. It +%% implements about \np[\%]{80} of the MPI 2.0 standard and allows minor +%% modifications of the initial code~\cite{bedaride+degomme+genaud+al.2013.toward} +%% (see Section~\ref{sec:04.02}). + + +%% Provided as an input to the simulator, at least $3$ XML files describe the +%% computational grid resources: number of clusters in the grid, number of +%% processors/cores in each cluster, detailed description of the intra and inter +%% networks and the list of the hosts in each cluster (see the details in Section~\ref{sec:expe}). Simgrid uses a fluid model to simulate the program execution. +%% This gives several simulation modes which produce accurate +%% results~\cite{bedaride+degomme+genaud+al.2013.toward, +%% velho+schnorr+casanova+al.2013.validity}. For instance, the "in vivo" mode +%% really executes the computation but "intercepts" the communications (running +%% time is then evaluated according to the parameters of the simulated platform). +%% It is also possible for SimGrid/SMPI to only keep duration of large +%% computations by skipping them. Moreover the application can be run "in vitro" +%% by sharing some in-memory structures between the simulated processes and +%% thus allowing the use of very large data scale. + + +%% The choice of Simgrid/SMPI as a simulator tool in this study has been emphasized +%% by the results obtained by several studies to validate, in real environments, +%% the behavior of different network models simulated in +%% Simgrid~\cite{velho+schnorr+casanova+al.2013.validity}. Other studies underline +%% the comparison between real MPI executions and SimGrid/SMPI +%% ones\cite{guermouche+renard.2010.first, clauss+stillwell+genaud+al.2011.single, +%% bedaride+degomme+genaud+al.2013.toward}. These works show the accuracy of +%% SimGrid simulations. + + + + + + +% SimGrid~\cite{SimGrid,casanova+legrand+quinson.2008.simgrid,casanova+giersch+legrand+al.2014.versatile} is a discrete event simulation framework to study the behavior of large-scale distributed computing platforms as Grids, Peer-to-Peer systems, Clouds and High Performance Computation systems. It is widely used to simulate and evaluate heuristics, prototype applications or even assess legacy MPI applications. It is still actively developed by the scientific community and distributed as an open source software. +% +% %%%%%%%%%%%%%%%%%%%%%%%%% +% % SimGrid~\cite{SimGrid,casanova+legrand+quinson.2008.simgrid,casanova+giersch+legrand+al.2014.versatile} +% % is a simulation framework to study the behavior of large-scale distributed +% % systems. As its name suggests, it emanates from the grid computing community, +% % but is nowadays used to study grids, clouds, HPC or peer-to-peer systems. The +% % early versions of SimGrid date back from 1999, but it is still actively +% % developed and distributed as an open source software. Today, it is one of the +% % major generic tools in the field of simulation for large-scale distributed +% % systems. +% +% SimGrid provides several programming interfaces: MSG to simulate Concurrent +% Sequential Processes, SimDAG to simulate DAGs of (parallel) tasks, and SMPI to +% run real applications written in MPI~\cite{MPI}. Apart from the native C +% interface, SimGrid provides bindings for the C++, Java, Lua and Ruby programming +% languages. SMPI is the interface that has been used for the work described in +% this paper. The SMPI interface implements about \np[\%]{80} of the MPI 2.0 +% standard~\cite{bedaride+degomme+genaud+al.2013.toward}, and supports +% applications written in C or Fortran, with little or no modifications (cf Section IV - paragraph B). +% +% Within SimGrid, the execution of a distributed application is simulated by a +% single process. The application code is really executed, but some operations, +% like communications, are intercepted, and their running time is computed +% according to the characteristics of the simulated execution platform. The +% description of this target platform is given as an input for the execution, by +% means of an XML file. It describes the properties of the platform, such as +% the computing nodes with their computing power, the interconnection links with +% their bandwidth and latency, and the routing strategy. The scheduling of the +% simulated processes, as well as the simulated running time of the application +% are computed according to these properties. +% +% To compute the durations of the operations in the simulated world, and to take +% into account resource sharing (e.g. bandwidth sharing between competing +% communications), SimGrid uses a fluid model. This allows users to run relatively fast +% simulations, while still keeping accurate +% results~\cite{bedaride+degomme+genaud+al.2013.toward, +% velho+schnorr+casanova+al.2013.validity}. Moreover, depending on the +% simulated application, SimGrid/SMPI allows to skip long lasting computations and +% to only take their duration into account. When the real computations cannot be +% skipped, but the results are unimportant for the simulation results, it is +% also possible to share dynamically allocated data structures between +% several simulated processes, and thus to reduce the whole memory consumption. +% These two techniques can help to run simulations on a very large scale. +% +% The validity of simulations with SimGrid has been asserted by several studies. +% See, for example, \cite{velho+schnorr+casanova+al.2013.validity} and articles +% referenced therein for the validity of the network models. Comparisons between +% real execution of MPI applications on the one hand, and their simulation with +% SMPI on the other hand, are presented in~\cite{guermouche+renard.2010.first, +% clauss+stillwell+genaud+al.2011.single, +% bedaride+degomme+genaud+al.2013.toward}. All these works conclude that +% SimGrid is able to simulate pretty accurately the real behavior of the +% applications. %%%%%%%%%%%%%%%%%%%%%%%%% \section{Two-stage multisplitting methods} \label{sec:04} \subsection{Synchronous and asynchronous two-stage methods for sparse linear systems} \label{sec:04.01} -In this paper we focus on two-stage multisplitting methods in their both versions (synchronous and asynchronous)~\cite{Frommer92,Szyld92,Bru95}. These iterative methods are based on multisplitting methods~\cite{O'leary85,White86,Alefeld97} and use two nested iterations: the outer iteration and the inner iteration. Let us consider the following sparse linear system of $n$ equations in $\mathbb{R}$: +In this paper we focus on two-stage multisplitting methods in both their versions (synchronous and asynchronous)~\cite{Frommer92,Szyld92,Bru95}. These iterative methods are based on multisplitting methods~\cite{O'leary85,White86,Alefeld97} and use two nested iterations: the outer iteration and the inner iteration. Let us consider the following sparse linear system of $n$ equations in $\mathbb{R}$: \begin{equation} Ax=b, \label{eq:01} @@ -236,14 +399,14 @@ where $A$ is a sparse square and nonsingular matrix, $b$ is the right-hand side x_\ell^{k+1} = A_{\ell\ell}^{-1}(b_\ell - \displaystyle\sum^{L}_{\substack{m=1\\m\neq\ell}}{A_{\ell m}x^k_m}),\mbox{~for~}\ell=1,\ldots,L\mbox{~and~}k=1,2,3,\ldots \label{eq:02} \end{equation} -where $x_\ell$ are sub-vectors of the solution $x$, $b_\ell$ are the sub-vectors of the right-hand side $b$, and $A_{\ell\ell}$ and $A_{\ell m}$ are diagonal and off-diagonal blocks of matrix $A$ respectively. The iterations of these methods can naturally be computed in parallel such that each processor or cluster of processors is responsible for solving one splitting as a linear sub-system: +where $x_\ell$ are sub-vectors of the solution $x$, $b_\ell$ are the sub-vectors of the right-hand side $b$, and $A_{\ell\ell}$ and $A_{\ell m}$ are diagonal and off-diagonal blocks of matrix $A$ respectively. The iterations of these methods can naturally be computed in parallel so that each processor or cluster of processors is responsible for solving one splitting as a linear sub-system: \begin{equation} A_{\ell\ell} x_\ell = c_\ell,\mbox{~for~}\ell=1,\ldots,L, \label{eq:03} \end{equation} -where right-hand sides $c_\ell=b_\ell-\sum_{m\neq\ell}A_{\ell m}x_m$ are computed using the shared vectors $x_m$. In this paper, we use the well-known iterative method GMRES ({\it Generalized Minimal RESidual})~\cite{saad86} as an inner iteration to approximate the solutions of the different splittings arising from the block Jacobi multisplitting of matrix $A$. The algorithm in Figure~\ref{alg:01} shows the main key points of our block Jacobi two-stage method executed by a cluster of processors. In line~\ref{solve}, the linear sub-system~(\ref{eq:03}) is solved in parallel using GMRES method where $\MIG$ and $\TOLG$ are the maximum number of inner iterations and the tolerance threshold for GMRES respectively. The convergence of the two-stage multisplitting methods, based on synchronous or asynchronous iterations, has been studied by many authors for example~\cite{Bru95,bahi07}. +where the right-hand sides $c_\ell=b_\ell-\sum_{m\neq\ell}A_{\ell m}x_m$ are computed using the shared vectors $x_m$. In this paper, we use the well-known iterative method GMRES~\cite{saad86} as an inner iteration to approximate the solutions of the different splittings arising from the block Jacobi multisplitting of matrix $A$. The algorithm in Figure~\ref{alg:01} shows the main key points of our block Jacobi two-stage method executed by a cluster of processors. Line~\ref{solve}, the linear sub-system~(\ref{eq:03}) is solved in parallel using the GMRES method where $\MIG$ and $\TOLG$ are the maximum number of inner iterations and the tolerance threshold for GMRES respectively. The convergence of the two-stage multisplitting methods, based on synchronous or asynchronous iterations, has been studied by many authors for example~\cite{Bru95,bahi07}. -\begin{figure}[t] +\begin{figure}[htpb] %\begin{algorithm}[t] %\caption{Block Jacobi two-stage multisplitting method} \begin{algorithmic}[1] @@ -262,7 +425,7 @@ where right-hand sides $c_\ell=b_\ell-\sum_{m\neq\ell}A_{\ell m}x_m$ are compute %\end{algorithm} \end{figure} -In this paper, we propose two algorithms of two-stage multisplitting methods. The first algorithm is based on the asynchronous model which allows communications to be overlapped by computations and reduces the idle times resulting from the synchronizations. So in the asynchronous mode, our two-stage algorithm uses asynchronous outer iterations and asynchronous communications between clusters. The communications (i.e. lines~\ref{send} and~\ref{recv} in Figure~\ref{alg:01}) are performed by message passing using MPI non-blocking communication routines. The convergence of the asynchronous iterations is detected when all clusters have locally converged: +In this paper, we propose two algorithms of two-stage multisplitting methods. The first algorithm is based on the asynchronous scheme which allows communications to be overlapped by computations and reduces the idle times resulting from the synchronizations. So in the asynchronous mode, our two-stage algorithm uses asynchronous outer iterations and asynchronous communications between clusters. The communications (i.e. lines~\ref{send} and~\ref{recv} in Figure~\ref{alg:01}) are performed by message passing using MPI non-blocking communication routines. The convergence of the asynchronous iterations is detected when all clusters have locally converged: \begin{equation} k\geq\MIM\mbox{~or~}\|x_\ell^{k+1}-x_\ell^k\|_{\infty }\leq\TOLM, \label{eq:04} @@ -279,9 +442,9 @@ At each $s$ outer iterations, the algorithm computes a new approximation $\tilde \min_{\alpha\in\mathbb{R}^s}{\|b-AS\alpha\|_2}. \label{eq:06} \end{equation} -The algorithm in Figure~\ref{alg:02} includes the procedure of the residual minimization and the outer iteration is restarted with a new approximation $\tilde{x}$ at every $s$ iterations. The least-squares problem~(\ref{eq:06}) is solved in parallel by all clusters using CGLS method~\cite{Hestenes52} such that $\MIC$ is the maximum number of iterations and $\TOLC$ is the tolerance threshold for this method (line~\ref{cgls} in Figure~\ref{alg:02}). +The algorithm in Figure~\ref{alg:02} includes the procedure of the residual minimization and the outer iteration is restarted with a new approximation $\tilde{x}$ at every $s$ iterations. The least-squares problem~(\ref{eq:06}) is solved in parallel by all clusters using the CGLS method~\cite{Hestenes52} sosuch that $\MIC$ is the maximum number of iterations and $\TOLC$ is the tolerance threshold for this method (line~\ref{cgls} in Figure~\ref{alg:02}). -\begin{figure}[t] +\begin{figure}[htbp] %\begin{algorithm}[t] %\caption{Krylov two-stage method using block Jacobi multisplitting} \begin{algorithmic}[1] @@ -310,37 +473,31 @@ The algorithm in Figure~\ref{alg:02} includes the procedure of the residual mini \subsection{Simulation of the two-stage methods using SimGrid toolkit} \label{sec:04.02} -One of our objectives when simulating the application in Simgrid is, as in real +One of our objectives when simulating the application in SimGrid is, as in real life, to get accurate results (solutions of the problem) but also to ensure the -test reproducibility under the same conditions. According to our experience, -very few modifications are required to adapt a MPI program for the Simgrid -simulator using SMPI (Simulator MPI). The first modification is to include SMPI -libraries and related header files (smpi.h). The second modification is to +test reproducibility under similar conditions. According to our experience, +very few modifications are required to adapt a MPI program for the SimGrid +simulator using SMPI (Simulated MPI). The first modification is to include SMPI +libraries and related header files (\verb+smpi.h+). The second modification is to suppress all global variables by replacing them with local variables or using a -Simgrid selector called "runtime automatic switching" +SimGrid selector called "runtime automatic switching" (smpi/privatize\_global\_variables). Indeed, global variables can generate side effects on runtime between the threads running in the same process and generated by -Simgrid to simulate the grid environment. - -%\RC{On vire cette phrase ?} \RCE {Si c'est la phrase d'avant sur les threads, je pense qu'on peut la retenir car c'est l'explication du pourquoi Simgrid n'aime pas les variables globales. Si c'est pas bien dit, on peut la reformuler. Si c'est la phrase ci-apres, effectivement, on peut la virer si elle preterais a discussion}The -%last modification on the MPI program pointed out for some cases, the review of -%the sequence of the MPI\_Isend, MPI\_Irecv and MPI\_Waitall instructions which -%might cause an infinite loop. +SimGrid to simulate the grid environment. - -\paragraph{Simgrid Simulator parameters} -\ \\ \noindent Before running a Simgrid benchmark, many parameters for the +\paragraph{Simulation parameters for SimGrid} +\ \\ \noindent Before running a SimGrid benchmark, many parameters for the computation platform must be defined. For our experiments, we consider platforms -in which several clusters are geographically distant, so there are intra and +in which several clusters are geographically distant, so that there are intra and inter-cluster communications. In the following, these parameters are described: \begin{itemize} - \item hostfile: hosts description file. + \item hostfile: hosts description file, \item platform: file describing the platform architecture: clusters (CPU power, -\dots{}), intra cluster network description, inter cluster network (bandwidth bw, -latency lat, \dots{}). +\dots{}), intra cluster network description, inter cluster network (bandwidth $bw$, +latency $lat$, \dots{}), \item archi : grid computational description (number of clusters, number of -nodes/processors for each cluster). +nodes/processors in each cluster). \end{itemize} \noindent In addition, the following arguments are given to the programs at runtime: @@ -348,29 +505,28 @@ In addition, the following arguments are given to the programs at runtime: \begin{itemize} \item maximum number of inner iterations $\MIG$ and outer iterations $\MIM$, \item inner precision $\TOLG$ and outer precision $\TOLM$, - \item matrix sizes of the 3D Poisson problem: N$_{x}$, N$_{y}$ and N$_{z}$ on axis $x$, $y$ and $z$ respectively, - \item matrix diagonal value is fixed to $6.0$ for synchronous Krylov multisplitting experiments and $6.2$ for asynchronous block Jacobi experiments, \RC{CE tu vérifies, je dis ca de tête} + \item matrix sizes of the problem: N$_{x}$, N$_{y}$ and N$_{z}$ on axis $x$, $y$ and $z$ respectively (in our experiments, we solve 3D problem, see Section~\ref{3dpoisson}), + \item matrix diagonal value is fixed to $6.0$ for synchronous experiments and $6.2$ for asynchronous ones, \item matrix off-diagonal value is fixed to $-1.0$, \item number of vectors in matrix $S$ (i.e. value of $s$), \item maximum number of iterations $\MIC$ and precision $\TOLC$ for CGLS method, \item maximum number of iterations and precision for the classical GMRES method, \item maximum number of restarts for the Arnorldi process in GMRES method, - \item execution mode: synchronous or asynchronous, + \item execution mode: synchronous or asynchronous. \end{itemize} -It should also be noticed that both solvers have been executed with the Simgrid selector \texttt{-cfg=smpi/running\_power} which determines the computational power (here 19GFlops) of the simulator host machine. +It should also be noticed that both solvers have been executed with the SimGrid selector \texttt{-cfg=smpi/running\_power} which determines the computational power (here 19GFlops) of the simulator host machine. %%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%% -\section{Experimental Results} +\section{Experimental results} \label{sec:expe} -In this section, experiments for both Multisplitting algorithms are reported. First the 3D Poisson problem used in our experiments is described. +In this section, experiments for both multisplitting algorithms are reported. First the 3D Poisson problem used in our experiments is described. \subsection{The 3D Poisson problem} - - +\label{3dpoisson} We use our two-stage algorithms to solve the well-known Poisson problem $\nabla^2\phi=f$~\cite{Polyanin01}. In three-dimensional Cartesian coordinates in $\mathbb{R}^3$, the problem takes the following form: \begin{equation} \frac{\partial^2}{\partial x^2}\phi(x,y,z)+\frac{\partial^2}{\partial y^2}\phi(x,y,z)+\frac{\partial^2}{\partial z^2}\phi(x,y,z)=f(x,y,z)\mbox{~in the domain~}\Omega @@ -389,7 +545,13 @@ where the real-valued function $\phi(x,y,z)$ is the solution sought, $f(x,y,z)$ \end{equation} until convergence where $h$ is the grid spacing between two adjacent elements in the 3D computational grid. -In the parallel context, the 3D Poisson problem is partitioned into $L\times p$ sub-problems such that $L$ is the number of clusters and $p$ is the number of processors in each cluster. We apply the three-dimensional partitioning instead of the row-by-row one in order to reduce the size of the data shared at the sub-problems boundaries. In this case, each processor is in charge of parallelepipedic block of the problem and has at most six neighbors in the same cluster or in distant clusters with which it shares data at boundaries. +In the parallel context, the 3D Poisson problem is partitioned into $L\times p$ +sub-problems such that $L$ is the number of clusters and $p$ is the number of +processors in each cluster. We apply the three-dimensional partitioning instead +of the row-by-row one in order to reduce the size of the data shared at the +sub-problems boundaries. In this case, each processor is in charge of +parallelepipedic block of the problem and has at most six neighbors in the same +cluster or in distant clusters with which it shares data at boundaries. \subsection{Study setup and simulation methodology} @@ -401,10 +563,10 @@ the application to be tested. Numerical parallel iterative algorithms have been chosen for the study in this paper. \\ \textbf{Step 2}: Collect the software materials needed for the experimentation. -In our case, we have two variants algorithms for the resolution of the -3D-Poisson problem: (1) using the classical GMRES; (2) and the Multisplitting -method. In addition, the Simgrid simulator has been chosen to simulate the -behaviors of the distributed applications. Simgrid is running in a virtual +In our case, we have two variants for the resolution of the +3D-Poisson problem: (1) using the classical GMRES; (2) using the multisplitting +method. In addition, the SimGrid simulator has been chosen to simulate the +behaviors of the distributed applications. SimGrid is running in a virtual machine on a simple laptop. \\ \textbf{Step 3}: Fix the criteria which will be used for the future @@ -412,332 +574,252 @@ results comparison and analysis. In the scope of this study, we retain on the one hand the algorithm execution mode (synchronous and asynchronous) and on the other hand the execution time and the number of iterations to reach the convergence. \\ -\textbf{Step 4 }: Set up the different grid testbed environments that will be -simulated in the simulator tool to run the program. The following architecture -has been configured in Simgrid : 2x16, 4x8, 4x16, 8x8 and 2x50. The first number +\textbf{Step 4}: Set up the different grid testbed environments that will be +simulated in the simulator tool to run the program. The following architectures +have been configured in SimGrid : 2$\times$16, 4$\times$8, 4$\times$16, 8$\times$8 and 2$\times$50. The first number represents the number of clusters in the grid and the second number represents -the number of hosts (processors/cores) in each cluster. The network has been -designed to operate with a bandwidth equals to 10Gbits (resp. 1Gbits/s) and a -latency of 8.10$^{-6}$ seconds (resp. 5.10$^{-5}$) for the intra-clusters links -(resp. inter-clusters backbone links). \\ +the number of hosts (processors/cores) in each cluster. \\ -\textbf{Step 5}: Conduct an extensive and comprehensive testings +\textbf{Step 5}: Conduct extensive and comprehensive testings within these configurations by varying the key parameters, especially the CPU power capacity, the network parameters and also the size of the input data. \\ \textbf{Step 6} : Collect and analyze the output results. -\subsection{Factors impacting distributed applications performance in -a grid environment} +\subsection{Factors impacting distributed applications performance in a grid environment} When running a distributed application in a computational grid, many factors may -have a strong impact on the performances. First of all, the architecture of the +have a strong impact on the performance. First of all, the architecture of the grid itself can obviously influence the performance results of the program. The performance gain might be important theoretically when the number of clusters and/or the number of nodes (processors/cores) in each individual cluster increase. -Another important factor impacting the overall performances of the application +Another important factor impacting the overall performance of the application is the network configuration. Two main network parameters can modify drastically the program output results: \begin{enumerate} -\item the network bandwidth (bw=bits/s) also known as "the data-carrying - capacity" of the network is defined as the maximum of data that can transit +\item the network bandwidth ($bw$ in Gbits/s) also known as "the data-carrying + capacity" of the network is defined as the maximum amount of data that can transit from one point to another in a unit of time. -\item the network latency (lat : microsecond) defined as the delay from the - start time to send a simple data from a source to a destination. +\item the network latency ($lat$ in microseconds) defined as the delay from the + starting time to send a simple data from a source to a destination. \end{enumerate} -Upon the network characteristics, another impacting factor is the volume of data exchanged between the nodes in the cluster +Among the network characteristics, another impacting factor is the volume of data exchanged between the nodes in the cluster and between distant clusters. This parameter is application dependent. - In a grid environment, it is common to distinguish, on the one hand, the - "intra-network" which refers to the links between nodes within a cluster and - on the other hand, the "inter-network" which is the backbone link between - clusters. In practice, these two networks have different speeds. - The intra-network generally works like a high speed local network with a - high bandwith and very low latency. In opposite, the inter-network connects - clusters sometime via heterogeneous networks components throuth internet with - a lower speed. The network between distant clusters might be a bottleneck - for the global performance of the application. - -\subsection{Comparison of GMRES and Krylov Multisplitting algorithms in synchronous mode} - -In the scope of this paper, our first objective is to analyze when the Krylov -Multisplitting method has better performances than the classical GMRES -method. With a synchronous iterative method, better performances mean a -smaller number of iterations and execution time before reaching the convergence. -For a systematic study, the experiments should figure out that, for various -grid parameters values, the simulator will confirm the targeted outcomes, -particularly for poor and slow networks, focusing on the impact on the -communication performance on the chosen class of algorithm. - -The following paragraphs present the test conditions, the output results -and our comments.\\ - - -\subsubsection{Execution of the algorithms on various computational grid -architectures and scaling up the input matrix size} -\ \\ -% environment - -\begin{figure} [ht!] + In a grid environment, it is common to distinguish, on the one hand, the + \textit{intra-network} which refers to the links between nodes within a + cluster and on the other hand, the \textit{inter-network} which is the + backbone link between clusters. In practice, these two networks have + different speeds. The intra-network generally works like a high speed + local network with a high bandwidth and very low latency. On the contrary, the + inter-network connects clusters sometimes via heterogeneous networks components the through internet with a lower speed. The network between distant clusters + might be a bottleneck for the global performance of the application. + + +\subsection{Comparison between GMRES and two-stage multisplitting algorithms in +synchronous mode} +In the scope of this paper, our first objective is to analyze +when the synchronous Krylov two-stage method has better performances than the +classical GMRES method. With a synchronous iterative method, better performances +mean a smaller number of iterations and execution time before reaching the +convergence. + +Table~\ref{tab:01} summarizes the parameters used in the different simulations: +the grid architectures (i.e. the number of clusters and the number of nodes per +cluster), the network of inter-clusters backbone links and the matrix sizes of +the 3D Poisson problem. However, for all simulations we fix the network +parameters of the intra-clusters links: the bandwidth $bw$=10Gbit/s and the latency +$lat=8\mu$s. In what follows, we will present the test conditions, the output +results and our comments. + +\begin{table} [ht!] \begin{center} -\begin{tabular}{r c } - \hline - Grid & 2x16, 4x8, 4x16 and 8x8\\ %\hline - Network & N2 : bw=1Gbits/s - lat=5.10$^{-5}$ \\ %\hline - Input matrix size & N$_{x}$ x N$_{y}$ x N$_{z}$ =150 x 150 x 150\\ %\hline - - & N$_{x}$ x N$_{y}$ x N$_{z}$ =170 x 170 x 170 \\ \hline - \end{tabular} -\caption{Clusters x Nodes with N$_{x}$=150 or N$_{x}$=170 \RC{je ne comprends pas la légende... Ca ne serait pas plutot Characteristics of cluster (mais il faudrait lui donner un nom)}} +\begin{tabular}{ll} +\hline +Grid architecture & 2$\times$16, 4$\times$8, 4$\times$16 and 8$\times$8\\ +\multirow{2}{*}{Network inter-clusters} & $N1$: $bw$=10Gbit/s, $lat=8\mu$s \\ + & $N2$: $bw$=1Gbit/s, $lat=50\mu$s \\ +\multirow{2}{*}{Matrix size} & $Mat1$: N$_{x}\times$N$_{y}\times$N$_{z}$=150$\times$150$\times$150\\ + & $Mat2$: N$_{x}\times$N$_{y}\times$N$_{z}$=170$\times$170$\times$170 \\ \hline +\end{tabular} +\caption{Parameters for the different simulations} +\label{tab:01} \end{center} -\end{figure} - - - - -%\RCE{J'ai voulu mettre les tableaux des données mais je pense que c'est inutile et ça va surcharger} - - -In this section, we analyze the performences of algorithms running on various -grid configurations (2x16, 4x8, 4x16 and 8x8). First, the results in Figure~\ref{fig:01} -show for all grid configurations the non-variation of the number of iterations of -classical GMRES for a given input matrix size; it is not the case for the -multisplitting method. - -\RC{CE attention tu n'as pas mis de label dans tes figures, donc c'est le bordel, j'en mets mais vérifie...} -\RC{Les légendes ne sont pas explicites...} - - -\begin{figure} [ht!] - \begin{center} - \includegraphics[width=100mm]{cluster_x_nodes_nx_150_and_nx_170.pdf} - \end{center} - \caption{Cluster x Nodes N$_{x}$=150 and N$_{x}$=170} - \label{fig:01} -\end{figure} - - -The execution times between the two algorithms is significant with different -grid architectures, even with the same number of processors (for example, 2x16 -and 4x8). We can observ the low sensitivity of the Krylov multisplitting method -(compared with the classical GMRES) when scaling up the number of the processors -in the grid: in average, the GMRES (resp. Multisplitting) algorithm performs -$40\%$ better (resp. $48\%$) when running from 2x16=32 to 8x8=64 processors. - -\subsubsection{Running on two different inter-clusters network speed} -\ \\ - -\begin{figure} [ht!] +\end{table} + +\subsubsection{Simulations for various grid architectures and scaling-up matrix sizes\\} + +In this section, we analyze the simulations conducted on various grid +configurations and for different sizes of the 3D Poisson problem. The parameters +of the network between clusters is fixed to $N2$ (see +Table~\ref{tab:01}). Figure~\ref{fig:01} shows, for all grid configurations and +a given matrix size of 170$^3$ elements, a non-variation in the number of +iterations for the classical GMRES algorithm, which is not the case of the +Krylov two-stage algorithm. In fact, with multisplitting algorithms, the number +of splittings (in our case, it is equal to the number of clusters) influences on the +convergence speed. The higher the number of splittings is, the slower the +convergence of the algorithm is (see the output results obtained from +configurations 2$\times$16 vs. 4$\times$8 and configurations 4$\times$16 vs. +8$\times$8). + +The execution times between both algorithms are significant with different grid +architectures. The synchronous Krylov two-stage algorithm presents better +performances than the GMRES algorithm, even for a high number of clusters (it is about +$32\%$ more efficient on a grid of 8$\times$8 than the GMRES). In addition, we can +observe a better sensitivity of the Krylov two-stage algorithm (compared to the +GMRES one) when scaling up the number of the processors in the computational +grid: the Krylov two-stage algorithm is about $48\%$ and the GMRES algorithm is +about $40\%$ better on $64$ processors (grid of 8$\times$8) than $32$ processors +(grid of 2$\times$16). + +\begin{figure}[ht] \begin{center} -\begin{tabular}{r c } - \hline - Grid & 2x16, 4x8\\ %\hline - Network & N1 : bw=10Gbs-lat=8.10$^{-6}$ \\ %\hline - - & N2 : bw=1Gbs-lat=5.10$^{-5}$ \\ - Input matrix size & N$_{x}$ x N$_{y}$ x N$_{z}$ =150 x 150 x 150\\ \hline - \end{tabular} -\caption{Clusters x Nodes - Networks N1 x N2} +\includegraphics[width=100mm]{cluster_x_nodes_nx_150_and_nx_170.pdf} \end{center} +\caption{Various grid configurations with two matrix sizes: $150^3$ and $170^3$} +\label{fig:01} \end{figure} - - -%\begin{wrapfigure}{l}{100mm} -\begin{figure} [ht!] +\subsubsection{Simulations for two different inter-clusters network speeds\\} +In Figure~\ref{fig:02} we present the execution times of both algorithms to +solve a 3D Poisson problem of size $150^3$ on two different simulated network +$N1$ and $N2$ (see Table~\ref{tab:01}). As previously mentioned, we can see from +this figure that the Krylov two-stage algorithm is sensitive to the number of +clusters (i.e. it is better to have a small number of clusters). However, we can +notice an interesting behavior of the Krylov two-stage algorithm. It is less +sensitive to bad network bandwidth and latency for the inter-clusters links than +the GMRES algorithms. This means that the multisplitting methods are more +efficient for distributed systems with high latency networks. + +\begin{figure}[ht] \centering \includegraphics[width=100mm]{cluster_x_nodes_n1_x_n2.pdf} -\caption{Cluster x Nodes N1 x N2} +\caption{Various grid configurations with two networks parameters: $N1$ vs. $N2$} +%\LZK{CE, remplacer les ``,'' des décimales par un ``.''} +%\RCE{ok} \label{fig:02} \end{figure} -%\end{wrapfigure} - -These experiments compare the behavior of the algorithms running first on a -speed inter-cluster network (N1) and also on a less performant network (N2). -Figure~\ref{fig:02} shows that end users will gain to reduce the execution time -for both algorithms in using a grid architecture like 4x16 or 8x8: the -performance was increased by a factor of $2$. The results depict also that when -the network speed drops down (12.5\%), the difference between the execution -times can reach more than 25\%. \RC{c'est pas clair : la différence entre quoi et quoi?} -\DL{pas clair} - -\subsubsection{Network latency impacts on performance} -\ \\ -\begin{figure} [ht!] -\centering -\begin{tabular}{r c } - \hline - Grid & 2x16\\ %\hline - Network & N1 : bw=1Gbs \\ %\hline - Input matrix size & N$_{x}$ x N$_{y}$ x N$_{z}$ =150 x 150 x 150\\ \hline - \end{tabular} -\caption{Network latency impacts} -\end{figure} - +\subsubsection{Network latency impacts on performances\\} +Figure~\ref{fig:03} shows the impact of the network latency on the performances of both algorithms. The simulation is conducted on a computational grid of 2 clusters of 16 processors each (i.e. configuration 2$\times$16) interconnected by a network of bandwidth $bw$=1Gbit/s to solve a 3D Poisson problem of size $150^3$. According to the results, a degradation of the network latency from $8\mu$s to $60\mu$s implies an absolute execution time increase for both algorithms, but not with the same rate of degradation. The GMRES algorithm is more sensitive to the latency degradation than the Krylov two-stage algorithm. -\begin{figure} [ht!] +\begin{figure}[ht] \centering \includegraphics[width=100mm]{network_latency_impact_on_execution_time.pdf} -\caption{Network latency impacts on execution time} +\caption{Network latency impacts on performances} \label{fig:03} \end{figure} +\subsubsection{Network bandwidth impacts on performances\\} -According to the results of Figure~\ref{fig:03}, a degradation of the network -latency from $8.10^{-6}$ to $6.10^{-5}$ implies an absolute time increase of more -than $75\%$ (resp. $82\%$) of the execution for the classical GMRES (resp. Krylov -multisplitting) algorithm. In addition, it appears that the Krylov -multisplitting method tolerates more the network latency variation with a less -rate increase of the execution time. Consequently, in the worst case -($lat=6.10^{-5 }$), the execution time for GMRES is almost the double than the -time of the Krylov multisplitting, even though, the performance was on the same -order of magnitude with a latency of $8.10^{-6}$. - -\subsubsection{Network bandwidth impacts on performance} -\ \\ -\begin{figure} [ht!] -\centering -\begin{tabular}{r c } - \hline - Grid & 2x16\\ %\hline - Network & N1 : bw=1Gbs - lat=5.10$^{-5}$ \\ %\hline - Input matrix size & N$_{x}$ x N$_{y}$ x N$_{z}$ =150 x 150 x 150\\ \hline \\ - \end{tabular} -\caption{Network bandwidth impacts} -\end{figure} - +Figure~\ref{fig:04} reports the results obtained for the simulation of a grid of +$2\times16$ processors interconnected by a network of latency $lat=50\mu$s to +solve a 3D Poisson problem of size $150^3$. Increasing the +network bandwidth from $1$Gbit/s to $10$Gbit/s results in improving the performances of both algorithms by reducing the execution times. However, the Krylov two-stage +algorithm presents a better performance gain in the considered bandwidth +interval with a gain of $40\%$ compared to only about $24\%$ for the classical +GMRES algorithm. -\begin{figure} [ht!] +\begin{figure}[ht] \centering \includegraphics[width=100mm]{network_bandwith_impact_on_execution_time.pdf} -\caption{Network bandwith impacts on execution time} +\caption{Network bandwith impacts on performances} \label{fig:04} \end{figure} -The results of increasing the network bandwidth show the improvement of the -performance for both algorithms by reducing the execution time (see -Figure~\ref{fig:04}). However, in this case, the Krylov multisplitting method -presents a better performance in the considered bandwidth interval with a gain -of $40\%$ which is only around $24\%$ for the classical GMRES. - -\subsubsection{Input matrix size impacts on performance} -\ \\ -\begin{figure} [ht!] -\centering -\begin{tabular}{r c } - \hline - Grid & 4x8\\ %\hline - Network & N2 : bw=1Gbs - lat=5.10$^{-5}$ \\ - Input matrix size & N$_{x}$ = From 40 to 200\\ \hline - \end{tabular} -\caption{Input matrix size impacts} -\end{figure} - - -\begin{figure} [ht!] +\subsubsection{Matrix size impacts on performances\\} + +In these experiments, the matrix size of the 3D Poisson problem varies from +$50^3$ to $190^3$ elements. The simulated computational grid is composed of $4$ +clusters of $8$ processors each interconnected by the network $N2$ (see +Table~\ref{tab:01}). As shown in Figure~\ref{fig:05}, the execution +times for both algorithms increase with increased matrix sizes. For all problem +sizes, the GMRES algorithm is always slower than the Krylov two-stage algorithm. +Moreover, for this benchmark, it seems that the greater the problem size is, the +bigger the ratio between execution times of both algorithms is. We can also +observe that for some problem sizes, the convergence (and thus the execution +time) of the Krylov two-stage algorithm varies quite a lot. +%This is due to the 3D partitioning of the 3D matrix of the Poisson problem. +These findings may greatly help a lot end users to setup the best and the optimal targeted environment for the application deployment when focusing on the problem size scale up. + +\begin{figure}[ht] \centering \includegraphics[width=100mm]{pb_size_impact_on_execution_time.pdf} -\caption{Problem size impacts on execution time} +\caption{Problem size impacts on performances} \label{fig:05} \end{figure} -In these experiments, the input matrix size has been set from $N_{x} = N_{y} -= N_{z} = 40$ to $200$ side elements that is from $40^{3} = 64.000$ to $200^{3} -= 8,000,000$ points. Obviously, as shown in Figure~\ref{fig:05}, the execution -time for both algorithms increases when the input matrix size also increases. -But the interesting results are: -\begin{enumerate} - \item the drastic increase ($300$ times) \RC{Je ne vois pas cela sur la figure} -of the number of iterations needed to reach the convergence for the classical -GMRES algorithm when the matrix size go beyond $N_{x}=150$; -\item the classical GMRES execution time is almost the double for $N_{x}=140$ - compared with the Krylov multisplitting method. -\end{enumerate} - -These findings may help a lot end users to setup the best and the optimal -targeted environment for the application deployment when focusing on the problem -size scale up. It should be noticed that the same test has been done with the -grid 2x16 leading to the same conclusion. +\subsubsection{CPU power impacts on performances\\} -\subsubsection{CPU Power impacts on performance} +Using the SimGrid simulator flexibility, we have tried to determine the impact +of the CPU power of the processors in the different clusters on performances of +both algorithms. We have varied the CPU power from $1$GFlops to $19$GFlops. The +simulation is conducted on a grid of $2\times16$ processors interconnected by +the network $N2$ (see Table~\ref{tab:01}) to solve a 3D Poisson problem of size +$150^3$. The results depicted in Figure~\ref{fig:06} confirm the performance +gain, about $95\%$ for both algorithms, after improving the CPU power of +processors. -\begin{figure} [ht!] -\centering -\begin{tabular}{r c } - \hline - Grid & 2x16\\ %\hline - Network & N2 : bw=1Gbs - lat=5.10$^{-5}$ \\ %\hline - Input matrix size & N$_{x}$ = 150 x 150 x 150\\ \hline - \end{tabular} -\caption{CPU Power impacts} -\end{figure} - -\begin{figure} [ht!] +\begin{figure}[ht] \centering \includegraphics[width=100mm]{cpu_power_impact_on_execution_time.pdf} -\caption{CPU Power impacts on execution time} +\caption{CPU Power impacts on performances} \label{fig:06} \end{figure} +\ \\ -Using the Simgrid simulator flexibility, we have tried to determine the impact -on the algorithms performance in varying the CPU power of the clusters nodes -from $1$ to $19$ GFlops. The outputs depicted in Figure~\ref{fig:06} confirm the -performance gain, around $95\%$ for both of the two methods, after adding more -powerful CPU. +To conclude these series of experiments, with SimGrid we have been able to make +many simulations with many parameters variations. Doing all these experiments +with a real platform is most of the time impossible or very costly. Moreover +the behavior of both GMRES and Krylov two-stage algorithms is in accordance +with larger real executions on large scale supercomputers~\cite{couturier15}. -\DL{il faut une conclusion sur ces tests : ils confirment les résultats déjà -obtenus en grandeur réelle. Donc c'est une aide précieuse pour les dev. Pas -besoin de déployer sur une archi réelle} -\subsection{Comparing GMRES in native synchronous mode and the multisplitting algorithm in asynchronous mode} +\subsection{Comparison between synchronous GMRES and asynchronous two-stage multisplitting algorithms} -The previous paragraphs put in evidence the interests to simulate the behavior +The previous paragraphs put in evidence the interest to simulate the behavior of the application before any deployment in a real environment. In this section, following the same previous methodology, our goal is to compare the -efficiency of the multisplitting method in \textit{ asynchronous mode} with the +efficiency of the multisplitting method in \textit{ asynchronous mode} compared with the classical GMRES in \textit{synchronous mode}. The interest of using an asynchronous algorithm is that there is no more synchronization. With geographically distant clusters, this may be essential. -In this case, each processor can compute its iteration freely without any -synchronization with the other processors. Thus, the asynchronous may -theoretically reduce the overall execution time and can improve the algorithm +In this case, each processor can compute its iterations freely without any +synchronization with the other processors. Thus, an asynchronous algorithm may +theoretically reduce the overall execution time and can also improve the algorithm performance. -\RC{la phrase suivante est bizarre, je ne comprends pas pourquoi elle vient ici} -As stated before, the Simgrid simulator tool has been successfully used to show -the efficiency of the multisplitting in asynchronous mode and to find the best -combination of the grid resources (CPU, Network, input matrix size, \ldots ) to -get the highest \textit{"relative gain"} (exec\_time$_{GMRES}$ / -exec\_time$_{multisplitting}$) in comparison with the classical GMRES time. +In this section, the SimGrid simulator is used to compare the behavior of the +two-stage algorithm in asynchronous mode with GMRES in synchronous mode. +Several benchmarks have been performed with various combinations of the grid +resources (CPU, Network, matrix size, \ldots). The test conditions are +summarized in Table~\ref{tab:02}. + -The test conditions are summarized in the table below : \\ +%\LZK{Quelle table repporte les gains relatifs?? Sûrement pas Table II !!} +%\RCE{Table III avec la nouvelle numerotation} -\begin{figure} [ht!] + +\begin{table}[htbp] \centering -\begin{tabular}{r c } +\begin{tabular}{ll} \hline - Grid & 2x50 totaling 100 processors\\ %\hline - Processors Power & 1 GFlops to 1.5 GFlops\\ - Intra-Network & bw=1.25 Gbits - lat=5.10$^{-5}$ \\ %\hline - Inter-Network & bw=5 Mbits - lat=2.10$^{-2}$\\ - Input matrix size & N$_{x}$ = From 62 to 150\\ %\hline - Residual error precision & 10$^{-5}$ to 10$^{-9}$\\ \hline \\ + Grid architecture & 2$\times$50 totaling 100 processors\\ + Processors Power & 1 GFlops to 1.5 GFlops \\ + \multirow{2}{*}{Network inter-clusters} & $bw$: 5 Mbits to 50 Mbits\\ + & $lat$: 20 ms\\ + Matrix size & from $62^3$ to $150^3$\\ + Residual error precision & $10^{-5}$ to $10^{-11}$\\ \hline \\ \end{tabular} -\end{figure} +\caption{Test conditions: GMRES in synchronous mode vs. two-stage multisplitting in asynchronous mode} +\label{tab:02} +\end{table} -Again, comprehensive and extensive tests have been conducted with different -parametes as the CPU power, the network parameters (bandwidth and latency) in -the simulator tool and with different problem size. The relative gains greater -than 1 between the two algorithms have been captured after each step of the -test. In Figure~\ref{table:01} are reported the best grid configurations -allowing the multisplitting method to be more than 2.5 times faster than the -classical GMRES. These experiments also show the relative tolerance of the -multisplitting algorithm when using a low speed network as usually observed with -geographically distant clusters throuth the internet. % use the same column width for the following three tables \newlength{\mytablew}\settowidth{\mytablew}{\footnotesize\np{E-11}} @@ -748,7 +830,7 @@ geographically distant clusters throuth the internet. \end{tabular}} -\begin{figure}[!t] +\begin{table}[!t] \centering %\begin{table} % \caption{Relative gain of the multisplitting algorithm compared with the classical GMRES} @@ -764,7 +846,7 @@ geographically distant clusters throuth the internet. power (GFlops) & 1 & 1 & 1 & 1.5 & 1.5 & 1.5 & 1.5 & 1 & 1.5 & 1.5 \\ \hline - size (N) + size ($N^3$) & 62 & 62 & 62 & 100 & 100 & 110 & 120 & 130 & 140 & 150 \\ \hline Precision @@ -775,23 +857,58 @@ geographically distant clusters throuth the internet. \hline \end{mytable} %\end{table} - \caption{Relative gain of the multisplitting algorithm compared with the classical GMRES} - \label{table:01} -\end{figure} + \caption{Relative gains of the asynchronous two-stage multisplitting algorithm compared to the classical synchronous GMRES algorithm} + \label{tab:03} +\end{table} -\section{Conclusion} -CONCLUSION - +Table~\ref{tab:03} reports the relative gains between both algorithms. It is +defined by the ratio between the execution time of GMRES and the execution time +of the multisplitting. The ratio is greater than one because the asynchronous +multisplitting version is faster than GMRES. On average, the two-stage +multisplitting algorithm is more than $2.5$ times faster than the classical +GMRES. These experiments also show the relative tolerance of the multisplitting +algorithm when using a low speed network as usually observed with geographically +distant clusters through the internet. -\section*{Acknowledgment} +\section{Conclusion} +In this paper we have presented the simulation of the execution of three +different parallel solvers on some multi-core architectures. We have shown that +the SimGrid toolkit is an interesting simulation tool that has allowed us to +determine which method to choose given a specified multi-core architecture. +Moreover the simulated results are in accordance (i.e. with the same order of +magnitude) with the works presented in~\cite{couturier15}. Simulated results +also confirm the efficiency of the asynchronous multisplitting +algorithm compared to the synchronous GMRES especially in case of +geographically distant clusters. + +These results are important since it is very time consuming to find optimal +configuration and deployment requirements for a given application on a given +multi-core architecture. Finding good resource allocation policies under +varying CPU power, network speeds and loads is very challenging and labor +intensive. This problematic is even more difficult for the asynchronous +scheme where a small parameter variation of the execution platform and of the +application data can lead to very different numbers of iterations to reach the +convergeence and consequently to very different execution times. + + +In future works, we plan to investigate how to simulate the behavior of really +large scale applications. For example, if we are interested in simulating the +execution of the solvers of this paper with thousand or even dozens of thousands +of cores, it is not possible to do that with SimGrid. In fact, this tool will +make the real computation. That is why, we plan to focus our research on that problematic. + + + +%\section*{Acknowledgment} +\ack This work is partially funded by the Labex ACTION program (contract ANR-11-LABX-01-01). - \bibliographystyle{wileyj} \bibliography{biblio} + \end{document} %%% Local Variables: @@ -800,3 +917,7 @@ This work is partially funded by the Labex ACTION program (contract ANR-11-LABX- %%% fill-column: 80 %%% ispell-local-dictionary: "american" %%% End: + +% LocalWords: Ramamonjisoa Ziane Khodja Laiymani Raphaël Arnaud Giersch Femto +% LocalWords: Franche Comté Belfort GMRES multisplitting SimGrid Krylov SMPI +% LocalWords: MPI