X-Git-Url: https://bilbo.iut-bm.univ-fcomte.fr/and/gitweb/rce2015.git/blobdiff_plain/1c9222109c2b98b9a8efaf2752f1bb4806f93ddf..ba83d1e1dca7d4eaed2a24aa284fc7735dd5fc07:/paper.tex?ds=inline diff --git a/paper.tex b/paper.tex index a21da9a..cda1fdd 100644 --- a/paper.tex +++ b/paper.tex @@ -70,8 +70,8 @@ -\begin{document} \RCE{Titre a confirmer.} \title{Comparative performance -analysis of simulated grid-enabled numerical iterative algorithms} +\begin{document} +\title{Grid-enabled simulation of large-scale linear iterative solvers} %\itshape{\journalnamelc}\footnotemark[2]} \author{Charles Emile Ramamonjisoa\affil{1}, @@ -94,28 +94,27 @@ analysis of simulated grid-enabled numerical iterative algorithms} Email:~\email{l.zianekhodja@ulg.ac.be} } -\begin{abstract} The behavior of multi-core applications is always a challenge -to predict, especially with a new architecture for which no experiment has been -performed. With some applications, it is difficult, if not impossible, to build -accurate performance models. That is why another solution is to use a simulation -tool which allows us to change many parameters of the architecture (network -bandwidth, latency, number of processors) and to simulate the execution of such -applications. The main contribution of this paper is to show that the use of a -simulation tool (here we have decided to use the SimGrid toolkit) can really -help developpers to better tune their applications for a given multi-core -architecture. - -In particular we focus our attention on two parallel iterative algorithms based -on the Multisplitting algorithm and we compare them to the GMRES algorithm. -These algorithms are used to solve linear systems. Two different variants of -the Multisplitting are studied: one using synchronoous iterations and another -one with asynchronous iterations. For each algorithm we have simulated -different architecture parameters to evaluate their influence on the overall -execution time. The obtain simulated results confirm the real results -previously obtained on different real multi-core architectures and also confirm -the efficiency of the asynchronous multisplitting algorithm compared to the -synchronous GMRES method. +\begin{abstract} %% The behavior of multi-core applications is always a challenge +%% to predict, especially with a new architecture for which no experiment has been +%% performed. With some applications, it is difficult, if not impossible, to build +%% accurate performance models. That is why another solution is to use a simulation +%% tool which allows us to change many parameters of the architecture (network +%% bandwidth, latency, number of processors) and to simulate the execution of such +%% applications. The main contribution of this paper is to show that the use of a +%% simulation tool (here we have decided to use the SimGrid toolkit) can really +%% help developers to better tune their applications for a given multi-core +%% architecture. +%% In this paper we focus our attention on the simulation of iterative algorithms to solve sparse linear systems on large clusters. We study the behavior of the widely used GMRES algorithm and two different variants of the Multisplitting algorithms: one using synchronous iterations and another one with asynchronous iterations. +%% For each algorithm we have simulated +%% different architecture parameters to evaluate their influence on the overall +%% execution time. +%% The simulations confirm the real results previously obtained on different real multi-core architectures and also confirm the efficiency of the asynchronous Multisplitting algorithm on distant clusters compared to the synchronous GMRES algorithm. + + +The behavior of multi-core applications is always a challenge to predict, especially with a new architecture for which no experiment has been performed. With some applications, it is difficult, if not impossible, to build accurate performance models. That is why another solution is to use a simulation tool which allows us to change many parameters of the architecture (network bandwidth, latency, number of processors) and to simulate the execution of such applications. + +In this paper we focus on the simulation of iterative algorithms to solve sparse linear systems. We study the behavior of the GMRES algorithm and two different variants of the Multisplitting algorithms: using synchronous or asynchronous iterations. For each algorithm we have simulated different architecture parameters to evaluate their influence on the overall execution time. The simulations confirm the real results previously obtained on different real multi-core architectures and also confirm the efficiency of the asynchronous Multisplitting algorithm on distant clusters compared to the GMRES algorithm. \end{abstract} %\keywords{Algorithm; distributed; iterative; asynchronous; simulation; simgrid; @@ -171,34 +170,24 @@ very different execution times. In this challenging context we think that the use of a simulation tool can greatly leverage the possibility of testing various platform scenarios. -The main contribution of this paper is to show that the use of a simulation tool -(i.e. the SimGrid toolkit~\cite{SimGrid}) in the context of real parallel -applications (i.e. large linear system solvers) can help developers to better -tune their application for a given multi-core architecture. To show the validity -of this approach we first compare the simulated execution of the multisplitting -algorithm with the GMRES (Generalized Minimal Residual) -solver~\cite{saad86} in synchronous mode. The simulation results allow us to -determine which method to choose given a specified multi-core architecture. - -\LZK{Pas trop convainquant comme argument pour valider l'approche de simulation. \\On peut dire par exemple: on a pu simuler différents algos itératifs à large échelle (le plus connu GMRES et deux variantes de multisplitting) et la simulation nous a permis (sans avoir le vrai matériel) de déterminer quelle serait la meilleure solution pour une telle configuration de l'archi ou vice versa.\\A revoir...} -\DL{OK : ajout d'une phrase précisant tout cela} - -Moreover the obtained results on different simulated multi-core architectures -confirm the real results previously obtained on non simulated architectures. +The {\bf main contribution of this paper} is to show that the use of a +simulation tool (i.e. the SimGrid toolkit~\cite{SimGrid}) in the context of real +parallel applications (i.e. large linear system solvers) can help developers to +better tune their application for a given multi-core architecture. To show the +validity of this approach we first compare the simulated execution of the Krylov +multisplitting algorithm with the GMRES (Generalized Minimal Residual) +solver~\cite{saad86} in synchronous mode. The simulation results allow us to +determine which method to choose given a specified multi-core architecture. +Moreover the obtained results on different simulated multi-core architectures +confirm the real results previously obtained on non simulated architectures. More precisely the simulated results are in accordance (i.e. with the same order -of magnitude) with the works presented in [], which show that the multisplitting -method is more efficient than GMRES for large scale clusters. +of magnitude) with the works presented in~\cite{couturier15}, which show that +the synchronous multisplitting method is more efficient than GMRES for large +scale clusters. Simulated results also confirm the efficiency of the +asynchronous multisplitting algorithm compared to the synchronous GMRES +especially in case of geographically distant clusters. -\LZK{Il n y a pas dans la partie expé cette comparaison et confirmation des résultats entre la simulation et l'exécution réelle des algos sur les vrais clusters.\\ Sinon on pourrait ajouter dans la partie expé une référence vers le journal supercomput de krylov multi pour confirmer que cette méthode est meilleure que GMRES sur les clusters large échelle.} -\DL{OK ajout d'une phrase. Par contre je n'ai pas la ref. Merci de la mettre} - -We also confirm the efficiency of the -asynchronous multisplitting algorithm compared to the synchronous GMRES. - -\LZK{P.S.: Pour tout le papier, le principal objectif n'est pas de faire des comparaisons entre des méthodes itératives!!\\Sinon, les deux algorithmes Krylov multisplitting synchrone et multisplitting asynchrone sont plus efficaces que GMRES sur des clusters à large échelle.\\Et préciser, si c'est vraiment le cas, que le multisplitting asynchrone est plus efficace et adapté aux clusters distants par rapport aux deux autres algos (je n'ai pas encore lu la partie expé)} - -In -this way and with a simple computing architecture (a laptop) SimGrid allows us +In this way and with a simple computing architecture (a laptop) SimGrid allows us to run a test campaign of a real parallel iterative applications on different simulated multi-core architectures. To our knowledge, there is no related work on the large-scale multi-core simulation of a real synchronous and @@ -211,8 +200,6 @@ Section~\ref{sec:04} details the different solvers that we use. Finally our experimental results are presented in section~\ref{sec:expe} followed by some concluding remarks and perspectives. -\LZK{Proposition d'un titre pour le papier: Grid-enabled simulation of large-scale linear iterative solvers.} - \section{The asynchronous iteration model and the motivations of our work} \label{sec:asynchro} @@ -637,9 +624,7 @@ speed inter-cluster network (N1) and also on a less performant network (N2). Figure~\ref{fig:02} shows that end users will reduce the execution time for both algorithms when using a grid architecture like 4x16 or 8x8: the reduction is about $2$. The results depict also that when the network speed drops down (variation of 12.5\%), the difference between the two Multisplitting algorithms execution times can reach more than 25\%. -%\RC{c'est pas clair : la différence entre quoi et quoi?} -%\DL{pas clair} -%\RCE{Modifie} + %\begin{wrapfigure}{l}{100mm} @@ -784,10 +769,16 @@ on the algorithms performance in varying the CPU power of the clusters nodes from $1$ to $19$ GFlops. The outputs depicted in Figure~\ref{fig:06} confirm the performance gain, around $95\%$ for both of the two methods, after adding more powerful CPU. +\ \\ +%\DL{il faut une conclusion sur ces tests : ils confirment les résultats déjà +%obtenus en grandeur réelle. Donc c'est une aide précieuse pour les dev. Pas +%besoin de déployer sur une archi réelle} -\DL{il faut une conclusion sur ces tests : ils confirment les résultats déjà -obtenus en grandeur réelle. Donc c'est une aide précieuse pour les dev. Pas -besoin de déployer sur une archi réelle} +To conclude these series of experiments, with SimGrid we have been able to make +many simulations with many parameters variations. Doing all these experiments +with a real platform is most of the time not possible. Moreover the behavior of +both GMRES and Krylov multisplitting methods is in accordance with larger real +executions on large scale supercomputer~\cite{couturier15}. \subsection{Comparing GMRES in native synchronous mode and the multisplitting algorithm in asynchronous mode} @@ -834,7 +825,7 @@ Again, comprehensive and extensive tests have been conducted with different parameters as the CPU power, the network parameters (bandwidth and latency) and with different problem size. The relative gains greater than $1$ between the two algorithms have been captured after each step of the test. In -Figure~\ref{fig:07} are reported the best grid configurations allowing +Table~\ref{tab:08} are reported the best grid configurations allowing the multisplitting method to be more than $2.5$ times faster than the classical GMRES. These experiments also show the relative tolerance of the multisplitting algorithm when using a low speed network as usually observed with @@ -849,7 +840,7 @@ geographically distant clusters through the internet. \end{tabular}} -\begin{figure}[!t] +\begin{table}[!t] \centering %\begin{table} % \caption{Relative gain of the multisplitting algorithm compared with the classical GMRES} @@ -876,14 +867,35 @@ geographically distant clusters through the internet. \hline \end{mytable} %\end{table} - \caption{Relative gain of the multisplitting algorithm compared with the classical GMRES -\AG{C'est un tableau, pas une figure}} - \label{fig:07} -\end{figure} + \caption{Relative gain of the multisplitting algorithm compared with the classical GMRES} + \label{tab:08} +\end{table} \section{Conclusion} -CONCLUSION + +In this paper we have presented the simulation of the execution of three +different parallel solvers on some multi-core architectures. We have show that +the SimGrid toolkit is an interesting simulation tool that has allowed us to +determine which method to choose given a specified multi-core architecture. +Moreover the simulated results are in accordance (i.e. with the same order of +magnitude) with the works presented in~\cite{couturier15}. Simulated results +also confirm the efficiency of the asynchronous multisplitting +algorithm compared to the synchronous GMRES especially in case of +geographically distant clusters. + +These results are important since it is very time consuming to find optimal +configuration and deployment requirements for a given application on a given +multi-core architecture. Finding good resource allocations policies under +varying CPU power, network speeds and loads is very challenging and labor +intensive. This problematic is even more difficult for the asynchronous +scheme where a small parameter variation of the execution platform and of the +application data can lead to very different numbers of iterations to reach the +converge and so to very different execution times. + + +Our future works... + %\section*{Acknowledgment} @@ -892,9 +904,7 @@ This work is partially funded by the Labex ACTION program (contract ANR-11-LABX- \bibliographystyle{wileyj} \bibliography{biblio} -\AG{Warning bibtex à corriger (% - \texttt{empty booktitle in Bru95}% -).} + \end{document}