X-Git-Url: https://bilbo.iut-bm.univ-fcomte.fr/and/gitweb/rce2015.git/blobdiff_plain/43d72bd55903229e7b3352c16aa843b5de2e3014..e139a43b147ddae98f95e987560caadfa4c845c8:/paper.tex?ds=sidebyside diff --git a/paper.tex b/paper.tex index 835f1e4..0d24694 100644 --- a/paper.tex +++ b/paper.tex @@ -21,7 +21,6 @@ \usepackage{algpseudocode} %\usepackage{amsthm} \usepackage{graphicx} -\usepackage[american]{babel} % Extension pour les liens intra-documents (tagged PDF) % et l'affichage correct des URL (commande \url{http://example.com}) %\usepackage{hyperref} @@ -75,23 +74,26 @@ analysis of simulated grid-enabled numerical iterative algorithms} %\itshape{\journalnamelc}\footnotemark[2]} -\author{ Charles Emile Ramamonjisoa and - David Laiymani and - Arnaud Giersch and - Lilia Ziane Khodja and - Raphaël Couturier +\author{Charles Emile Ramamonjisoa\affil{1}, + David Laiymani\affil{1}, + Arnaud Giersch\affil{1}, + Lilia Ziane Khodja\affil{2} and + Raphaël Couturier\affil{1} } \address{ - \centering - Femto-ST Institute - DISC Department\\ - Université de Franche-Comté\\ - Belfort\\ - Email: \email{{raphael.couturier,arnaud.giersch,david.laiymani,charles.ramamonjisoa}@univ-fcomte.fr} + \affilnum{1}% + Femto-ST Institute, DISC Department, + University of Franche-Comté, + Belfort, France. + Email:~\email{{charles.ramamonjisoa,david.laiymani,arnaud.giersch,raphael.couturier}@univ-fcomte.fr}\break + \affilnum{2} + Department of Aerospace \& Mechanical Engineering, + Non Linear Computational Mechanics, + University of Liege, Liege, Belgium. + Email:~\email{l.zianekhodja@ulg.ac.be} } -%% Lilia Ziane Khodja: Department of Aerospace \& Mechanical Engineering\\ Non Linear Computational Mechanics\\ University of Liege\\ Liege, Belgium. Email: l.zianekhodja@ulg.ac.be - \begin{abstract} The behavior of multi-core applications is always a challenge to predict, especially with a new architecture for which no experiment has been performed. With some applications, it is difficult, if not impossible, to build @@ -615,15 +617,16 @@ the network speed drops down (variation of 12.5\%), the difference between t \end{figure} -According to the results of Figure~\ref{fig:03}, a degradation of the network -latency from $8.10^{-6}$ to $6.10^{-5}$ implies an absolute time increase of more -than $75\%$ (resp. $82\%$) of the execution for the classical GMRES (resp. Krylov -multisplitting) algorithm. In addition, it appears that the Krylov -multisplitting method tolerates more the network latency variation with a less -rate increase of the execution time. Consequently, in the worst case -($lat=6.10^{-5 }$), the execution time for GMRES is almost the double than the -time of the Krylov multisplitting, even though, the performance was on the same -order of magnitude with a latency of $8.10^{-6}$. +According to the results of Figure~\ref{fig:03}, a degradation of the network +latency from $8.10^{-6}$ to $6.10^{-5}$ implies an absolute time increase of +more than $75\%$ (resp. $82\%$) of the execution for the classical GMRES +(resp. Krylov multisplitting) algorithm. In addition, it appears that the +Krylov multisplitting method tolerates more the network latency variation with a +less rate increase of the execution time.\RC{Les 2 précédentes phrases me + semblent en contradiction....} Consequently, in the worst case ($lat=6.10^{-5 +}$), the execution time for GMRES is almost the double than the time of the +Krylov multisplitting, even though, the performance was on the same order of +magnitude with a latency of $8.10^{-6}$. \subsubsection{Network bandwidth impacts on performance} \ \\ @@ -635,7 +638,7 @@ order of magnitude with a latency of $8.10^{-6}$. Network & N1 : bw=1Gbs - lat=5.10$^{-5}$ \\ %\hline Input matrix size & N$_{x}$ x N$_{y}$ x N$_{z}$ =150 x 150 x 150\\ \hline \\ \end{tabular} -\caption{Test conditions: Network bandwidth impacts} +\caption{Test conditions: Network bandwidth impacts\RC{Qu'est ce qui varie ici? Il n'y a pas de variation dans le tableau}} \label{tab:04} \end{table} @@ -681,9 +684,9 @@ In these experiments, the input matrix size has been set from $N_{x} = N_{y} time for both algorithms increases when the input matrix size also increases. But the interesting results are: \begin{enumerate} - \item the drastic increase ($10$ times) \RC{Je ne vois pas cela sur la figure} -\RCE{Corrige} of the number of iterations needed to reach the convergence for the classical -GMRES algorithm when the matrix size go beyond $N_{x}=150$; + \item the drastic increase ($10$ times) of the number of iterations needed to + reach the convergence for the classical GMRES algorithm when the matrix size + go beyond $N_{x}=150$; \RC{C'est toujours pas clair... ok le nommbre d'itérations est 10 fois plus long mais la suite de la phrase ne veut rien dire} \item the classical GMRES execution time is almost the double for $N_{x}=140$ compared with the Krylov multisplitting method. \end{enumerate} @@ -820,11 +823,10 @@ geographically distant clusters through the internet. CONCLUSION -\section*{Acknowledgment} - +%\section*{Acknowledgment} +\ack This work is partially funded by the Labex ACTION program (contract ANR-11-LABX-01-01). - \bibliographystyle{wileyj} \bibliography{biblio}