X-Git-Url: https://bilbo.iut-bm.univ-fcomte.fr/and/gitweb/rce2015.git/blobdiff_plain/70f821453ece3cab916c2726ae554ca416493c41..790076ac4faf501e0eb39d825fba2570cbe85f24:/paper.tex?ds=sidebyside diff --git a/paper.tex b/paper.tex index 8259385..24ab679 100644 --- a/paper.tex +++ b/paper.tex @@ -549,14 +549,34 @@ Grid architecture & 2$\times$16, 4$\times$8, 4$\times$16 a \end{center} \end{table} - - - \subsubsection{Simulations for various grid architectures and scaling-up matrix sizes} \ \\ % environment +In this section, we analyze the simulations conducted on various grid +configurations and for different sizes of the 3D Poisson problem. The parameters +of the network between clusters is fixed to $N1$ (see +Table~\ref{tab:01}. Figure~\ref{fig:01} shows, for all grid configurations and a +given matrix size 170$^3$ elements, a non-variation in the number of iterations +for the classical GMRES algorithm, which is not the case of the Krylov two-stage +algorithm. In fact, with multisplitting algorithms, the number of splitting (in +our case, it is the number of clusters) influences on the convergence speed. The +higher the number of splitting is, the slower the convergence of the algorithm +is. + + + + + + + + + + + + + + -Table~\ref{tab:01} summarizes the different parameters used in the simulations: the grid architectures, the network of inter-cluster backbone links and the matrix sizes of the 3D Poisson problem. @@ -568,20 +588,6 @@ Table~\ref{tab:01} summarizes the different parameters used in the simulations: -In this section, we analyze the simulations conducted on various grid -configurations presented in Table~\ref{tab:01}. It should be noticed that two -networks are considered: N1 is the network between clusters (inter-cluster) and -N2 is the network inside a cluster (intra-cluster). Figure~\ref{fig:01} shows, -for all grid configurations and a given matrix size, a non-variation in the -number of iterations for the classical GMRES algorithm, which is not the case of -the Krylov two-stage algorithm. -%% First, the results in Figure~\ref{fig:01} -%% show for all grid configurations the non-variation of the number of iterations of -%% classical GMRES for a given input matrix size; it is not the case for the -%% multisplitting method. -%\RC{CE attention tu n'as pas mis de label dans tes figures, donc c'est le bordel, j'en mets mais vérifie...} -%\RC{Les légendes ne sont pas explicites...} -%\RCE{Corrige} \begin{figure} [htbp] \begin{center} @@ -597,15 +603,15 @@ the Krylov two-stage algorithm. -The execution times between the two algorithms is significant with different +The execution times between both algorithms is significant with different grid architectures, even with the same number of processors (for example, 2 $\times$ 16 and 4 $\times 8$). We can observe a better sensitivity of the Krylov multisplitting method (compared with the classical GMRES) when scaling up the number of the processors in the grid: in average, the GMRES (resp. Multisplitting) algorithm performs $40\%$ better (resp. $48\%$) when running from 32 (grid 2 $\times$ 16) to 64 processors/cores (grid 8 $\times$ 8). Note that even with a grid 8 $\times$ 8 having the maximum number of clusters, the execution time of the multisplitting method is in average 32\% less compared to GMRES. -\RC{pas très clair, c'est pas précis de dire qu'un algo perform mieux qu'un autre, selon quel critère?} -\LZK{A revoir toute cette analyse... Le multi est plus performant que GMRES. Les temps d'exécution de multi sont sensibles au nombre de CLUSTERS. Il est moins performant pour un nombre grand de cluster. Avez vous d'autres remarques?} -\RCE{Remarquez que meme avec une grille 8x8, le multi est toujours plus performant} +%\RC{pas très clair, c'est pas précis de dire qu'un algo perform mieux qu'un autre, selon quel critère?} +%\LZK{A revoir toute cette analyse... Le multi est plus performant que GMRES. Les temps d'exécution de multi sont sensibles au nombre de CLUSTERS. Il est moins performant pour un nombre grand de cluster. Avez vous d'autres remarques?} +%\RCE{Remarquez que meme avec une grille 8x8, le multi est toujours plus performant} \subsubsection{Simulations for two different inter-clusters network speeds \\} @@ -717,7 +723,7 @@ of $40\%$ which is only around $24\%$ for the classical GMRES. \hline Grid Architecture & 4 $\times$ 8\\ %\hline Inter Network & $bw$=1Gbs - $lat$=5.10$^{-5}$ \\ - Input matrix size & $N_{x} \times N_{y} \times N_{z}$ = From 40$^{3}$ to 200$^{3}$\\ \hline + Input matrix size & $N_{x} \times N_{y} \times N_{z}$ = From 50$^{3}$ to 190$^{3}$\\ \hline \end{tabular} \caption{Test conditions: Input matrix size impacts} \label{tab:05} @@ -731,25 +737,20 @@ of $40\%$ which is only around $24\%$ for the classical GMRES. \label{fig:05} \end{figure} -In these experiments, the input matrix size has been set from $N_{x} = N_{y} -= N_{z} = 40$ to $200$ side elements that is from $40^{3} = 64.000$ to $200^{3} -= 8,000,000$ points. Obviously, as shown in Figure~\ref{fig:05}, the execution -time for both algorithms increases when the input matrix size also increases. -But the interesting results are: -\begin{enumerate} - \item the important increase ($10$ times) of the number of iterations needed to - reach the convergence for the classical GMRES algorithm particularly, when the matrix size - go beyond $N_{x}=150$; \RC{C'est toujours pas clair... ok le nommbre d'itérations est 10 fois plus long mais la suite de la phrase ne veut rien dire} - \RCE{Le nombre d'iterations augmente de 10 fois, cela surtout a partir de N=150} - -\item the classical GMRES execution time is almost the double for $N_{x}=140$ - compared with the Krylov multisplitting method. -\end{enumerate} +In these experiments, the input matrix size has been set from $50^3$ to +$190^3$. Obviously, as shown in Figure~\ref{fig:05}, the execution time for both +algorithms increases when the input matrix size also increases. For all problem +sizes, GMRES is always slower than the Krylov multisplitting. Moreover, for this +benchmark, it seems that the greater the problem size is, the bigger the ratio +between both algorithm execution times is. We can also observ that for some +problem sizes, the Krylov multisplitting convergence varies quite a +lot. Consequently the execution times in that cases also varies. + These findings may help a lot end users to setup the best and the optimal targeted environment for the application deployment when focusing on the problem size scale up. It should be noticed that the same test has been done with the -grid 2 $\times$ 16 leading to the same conclusion. +grid 4 $\times$ 8 leading to the same conclusion. \subsubsection{CPU Power impacts on performance}