X-Git-Url: https://bilbo.iut-bm.univ-fcomte.fr/and/gitweb/rce2015.git/blobdiff_plain/a0fcf29838c2b115bdb217bc2966c244cdb09649..d2f6dd23c329a1dc4056aa229e08119172290acb:/paper.tex?ds=sidebyside diff --git a/paper.tex b/paper.tex index b7d5fef..77dde18 100644 --- a/paper.tex +++ b/paper.tex @@ -1,4 +1,3 @@ -%\documentclass[conference]{IEEEtran} \documentclass[times]{cpeauth} \usepackage{moreverb} @@ -99,7 +98,29 @@ ABSTRACT \section{SimGrid} -\section{Simulation of the multisplitting method} +%%%%%%%%%%%%%%%%%%%%%%%%% +%%%%%%%%%%%%%%%%%%%%%%%%% + +\section{Two-stage splitting methods} +\label{sec:04} +\subsection{Multisplitting methods for sparse linear systems} +\label{sec:04.01} +Let us consider the following sparse linear system of $n$ equations in $\mathbb{R}$: +\begin{equation} +Ax=b, +\label{eq:01} +\end{equation} +where $A$ is a sparse square and nonsingular matrix, $b$ is the right-hand side and $x$ is the solution of the system. The multisplitting methods solve the linear system~(\ref{eq:01}) iteratively as follows: +\begin{equation} +x^{k+1}=\displaystyle\sum^L_{\ell=1} E_\ell M^{-1}_\ell (N_\ell x^k + b),~k=1,2,3,\ldots +\label{eq:02} +\end{equation} +where a collection of $L$ triplets $(M_\ell, N_\ell, E_\ell)$ defines the multisplitting of matrix $A$, such that: the different splittings are defined as $A=M_\ell-N_\ell$ where $M_\ell$ are nonsingular matrices, and $\sum_\ell{E_\ell=I}$ are diagonal nonnegative weighting matrices and $I$ is the identity matrix. + +\subsection{Simulation of two-stage methods using SimGrid framework} + +%%%%%%%%%%%%%%%%%%%%%%%%% +%%%%%%%%%%%%%%%%%%%%%%%%% \section{Experimental, Results and Comments} @@ -226,14 +247,14 @@ The results in figure 1 show the non-variation of the number of iterations of classical GMRES for a given input matrix size; it is not the case for the multisplitting method. -%%\begin{wrapfigure}{l}{60mm} +%\begin{wrapfigure}{l}{60mm} \begin{figure} [ht!] \centering -\includegraphics[width=60mm]{Cluster x Nodes NX=150 and NX=170.jpg} -\caption{Cluster x Nodes NX=150 and NX=170 \label{overflow}} +\includegraphics[width=60mm]{cluster_x_nodes_nx_150_and_nx_170.pdf} +\caption{Cluster x Nodes NX=150 and NX=170} +%\label{overflow}} \end{figure} -%%\end{wrapfigure} - +%\end{wrapfigure} Unless the 8x8 cluster, the time execution difference between the two algorithms is important when @@ -260,11 +281,14 @@ matrix size. %\RCE{idem pour tous les tableaux de donnees} +%\begin{wrapfigure}{l}{60mm} \begin{figure} [ht!] \centering -\includegraphics[width=60mm]{Cluster x Nodes N1 x N2.jpg} -\caption{Cluster x Nodes N1 x N2\label{overflow}} +\includegraphics[width=60mm]{cluster_x_nodes_n1_x_n2.pdf} +\caption{Cluster x Nodes N1 x N2} +%\label{overflow}} \end{figure} +%\end{wrapfigure} The experiments compare the behavior of the algorithms running first on speed inter- cluster network (N1) and a less performant network (N2). @@ -291,8 +315,9 @@ Table 3 : Network latency impact \begin{figure} [ht!] \centering -\includegraphics[width=60mm]{Network latency impact on execution time.jpg} -\caption{Network latency impact on execution time\label{overflow}} +\includegraphics[width=60mm]{network_latency_impact_on_execution_time.pdf} +\caption{Network latency impact on execution time} +%\label{overflow}} \end{figure} @@ -322,8 +347,9 @@ Table 4 : Network bandwidth impact \begin{figure} [ht!] \centering -\includegraphics[width=60mm]{Network bandwith impact on execution time.jpg} -\caption{Network bandwith impact on execution time\label{overflow}} +\includegraphics[width=60mm]{network_bandwith_impact_on_execution_time.pdf} +\caption{Network bandwith impact on execution time} +%\label{overflow} \end{figure} @@ -350,8 +376,9 @@ Table 5 : Input matrix size impact \begin{figure} [ht!] \centering -\includegraphics[width=60mm]{Pb size impact on execution time.jpg} -\caption{Pb size impact on execution time\label{overflow}} +\includegraphics[width=60mm]{pb_size_impact_on_execution_time.pdf} +\caption{Pb size impact on execution time} +%\label{overflow}} \end{figure} In this experimentation, the input matrix size has been set from @@ -384,8 +411,9 @@ Table 6 : CPU Power impact \begin{figure} [ht!] \centering -\includegraphics[width=60mm]{CPU Power impact on execution time.jpg} -\caption{CPU Power impact on execution time\label{overflow}} +\includegraphics[width=60mm]{cpu_power_impact_on_execution_time.pdf} +\caption{CPU Power impact on execution time} +%\label{overflow}} \end{figure} Using the SIMGRID simulator flexibility, we have tried to determine the