X-Git-Url: https://bilbo.iut-bm.univ-fcomte.fr/and/gitweb/rce2015.git/blobdiff_plain/c3ca8e7b5f68dc2cc181af3890ab331b107e9371..d68696e794f5a194dfd430a8397b1e6d55525843:/paper.tex?ds=inline diff --git a/paper.tex b/paper.tex index 64c70c8..94bdb91 100644 --- a/paper.tex +++ b/paper.tex @@ -322,7 +322,7 @@ In the scope of this paper, our first objective is to demonstrate the Algo-2 (Multisplitting method) shows a better performance in grid architecture compared with Algo-1 (Classical GMRES) both running in \textbf{\textit{synchronous mode}}. Better algorithm performance -should mean a less number of iterations output and a less execution time +should means a less number of iterations output and a less execution time before reaching the convergence. For a systematic study, the experiments should figure out that, for various grid parameters values, the simulator will confirm the targeted outcomes, particularly for poor and @@ -330,7 +330,7 @@ slow networks, focusing on the impact on the communication performance on the chosen class of algorithm. The following paragraphs present the test conditions, the output results -and our comments. +and our comments.\\ \textit{3.a Executing the algorithms on various computational grid @@ -342,11 +342,11 @@ architecture scaling up the input matrix size} \begin{tabular}{r c } \hline Grid & 2x16, 4x8, 4x16 and 8x8\\ %\hline - Network & N2 : bw=1Gbs-lat=5E-05 \\ %\hline - Input matrix size & N$_{x}$ =150 x 150 x 150 and\\ %\hline - - & N$_{x}$ =170 x 170 x 170 \\ \hline + Network & N2 : bw=1Gbits/s - lat=\np{5E-5} \\ %\hline + Input matrix size & N$_{x}$ x N$_{y}$ x N$_{z}$ =150 x 150 x 150\\ %\hline + - & N$_{x}$ x N$_{y}$ x N$_{z}$ =170 x 170 x 170 \\ \hline \end{tabular} -Table 1 : Clusters x Nodes with NX=150 or NX=170 \\ +Table 1 : Clusters x Nodes with N$_{x}$=150 or N$_{x}$=170 \\ \end{footnotesize} @@ -355,7 +355,7 @@ Table 1 : Clusters x Nodes with NX=150 or NX=170 \\ %\RCE{J'ai voulu mettre les tableaux des données mais je pense que c'est inutile et ça va surcharger} -The results in figure 1 show the non-variation of the number of +The results in figure 3 show the non-variation of the number of iterations of classical GMRES for a given input matrix size; it is not the case for the multisplitting method.