X-Git-Url: https://bilbo.iut-bm.univ-fcomte.fr/and/gitweb/rce2015.git/blobdiff_plain/e139a43b147ddae98f95e987560caadfa4c845c8..d82538505eacc4b261cdfde4170ad69f2956c048:/paper.tex?ds=sidebyside diff --git a/paper.tex b/paper.tex index 0d24694..1b7b9eb 100644 --- a/paper.tex +++ b/paper.tex @@ -70,8 +70,8 @@ -\begin{document} \RCE{Titre a confirmer.} \title{Comparative performance -analysis of simulated grid-enabled numerical iterative algorithms} +\begin{document} +\title{Grid-enabled simulation of large-scale linear iterative solvers} %\itshape{\journalnamelc}\footnotemark[2]} \author{Charles Emile Ramamonjisoa\affil{1}, @@ -136,7 +136,7 @@ are often very important. So, in this context it is difficult to optimize a given application for a given architecture. In this way and in order to reduce the access cost to these computing resources it seems very interesting to use a simulation environment. The advantages are numerous: development life cycle, -code debugging, ability to obtain results quickly~\ldots. In counterpart, the simulation results need to be consistent with the real ones. +code debugging, ability to obtain results quickly\dots{} In counterpart, the simulation results need to be consistent with the real ones. In this paper we focus on a class of highly efficient parallel algorithms called \emph{iterative algorithms}. The parallel scheme of iterative methods is quite @@ -165,34 +165,30 @@ application on a given multi-core architecture. Finding good resource allocations policies under varying CPU power, network speeds and loads is very challenging and labor intensive~\cite{Calheiros:2011:CTM:1951445.1951450}. This problematic is even more difficult for the asynchronous scheme where a small -parameter variation of the execution platform can lead to very different numbers -of iterations to reach the converge and so to very different execution times. In -this challenging context we think that the use of a simulation tool can greatly -leverage the possibility of testing various platform scenarios. - -The main contribution of this paper is to show that the use of a simulation tool -(i.e. the SimGrid toolkit~\cite{SimGrid}) in the context of real parallel -applications (i.e. large linear system solvers) can help developers to better -tune their application for a given multi-core architecture. To show the validity -of this approach we first compare the simulated execution of the multisplitting -algorithm with the GMRES (Generalized Minimal Residual) -solver~\cite{saad86} in synchronous mode. - -\LZK{Pas trop convainquant comme argument pour valider l'approche de simulation. \\On peut dire par exemple: on a pu simuler différents algos itératifs à large échelle (le plus connu GMRES et deux variantes de multisplitting) et la simulation nous a permis (sans avoir le vrai matériel) de déterminer quelle serait la meilleure solution pour une telle configuration de l'archi ou vice versa.\\A revoir...} - -The obtained results on different -simulated multi-core architectures confirm the real results previously obtained -on non simulated architectures. - -\LZK{Il n y a pas dans la partie expé cette comparaison et confirmation des résultats entre la simulation et l'exécution réelle des algos sur les vrais clusters.\\ Sinon on pourrait ajouter dans la partie expé une référence vers le journal supercomput de krylov multi pour confirmer que cette méthode est meilleure que GMRES sur les clusters large échelle.} - -We also confirm the efficiency of the -asynchronous multisplitting algorithm compared to the synchronous GMRES. - -\LZK{P.S.: Pour tout le papier, le principal objectif n'est pas de faire des comparaisons entre des méthodes itératives!!\\Sinon, les deux algorithmes Krylov multisplitting synchrone et multisplitting asynchrone sont plus efficaces que GMRES sur des clusters à large échelle.\\Et préciser, si c'est vraiment le cas, que le multisplitting asynchrone est plus efficace et adapté aux clusters distants par rapport aux deux autres algos (je n'ai pas encore lu la partie expé)} - -In -this way and with a simple computing architecture (a laptop) SimGrid allows us +parameter variation of the execution platform and of the application data can +lead to very different numbers of iterations to reach the converge and so to +very different execution times. In this challenging context we think that the +use of a simulation tool can greatly leverage the possibility of testing various +platform scenarios. + +The {\bf main contribution of this paper} is to show that the use of a +simulation tool (i.e. the SimGrid toolkit~\cite{SimGrid}) in the context of real +parallel applications (i.e. large linear system solvers) can help developers to +better tune their application for a given multi-core architecture. To show the +validity of this approach we first compare the simulated execution of the Krylov +multisplitting algorithm with the GMRES (Generalized Minimal Residual) +solver~\cite{saad86} in synchronous mode. The simulation results allow us to +determine which method to choose given a specified multi-core architecture. +Moreover the obtained results on different simulated multi-core architectures +confirm the real results previously obtained on non simulated architectures. +More precisely the simulated results are in accordance (i.e. with the same order +of magnitude) with the works presented in~\cite{couturier15}, which show that +the synchronous multisplitting method is more efficient than GMRES for large +scale clusters. Simulated results also confirm the efficiency of the +asynchronous multisplitting algorithm compared to the synchronous GMRES +especially in case of geographically distant clusters. + +In this way and with a simple computing architecture (a laptop) SimGrid allows us to run a test campaign of a real parallel iterative applications on different simulated multi-core architectures. To our knowledge, there is no related work on the large-scale multi-core simulation of a real synchronous and @@ -205,8 +201,6 @@ Section~\ref{sec:04} details the different solvers that we use. Finally our experimental results are presented in section~\ref{sec:expe} followed by some concluding remarks and perspectives. -\LZK{Proposition d'un titre pour le papier: Grid-enabled simulation of large-scale linear iterative solvers.} - \section{The asynchronous iteration model and the motivations of our work} \label{sec:asynchro} @@ -237,7 +231,7 @@ for the asynchronous scheme (this number depends depends on the delay of the messages). Note that, it is not the case in the synchronous mode where the number of iterations is the same than in the sequential mode. In this way, the set of the parameters of the platform (number of nodes, power of nodes, -inter and intra clusters bandwidth and latency \ldots) and of the +inter and intra clusters bandwidth and latency, \ldots) and of the application can drastically change the number of iterations required to get the convergence. It follows that asynchronous iterative algorithms are difficult to optimize since the financial and deployment costs on large scale multi-core @@ -252,6 +246,57 @@ magnitude. To our knowledge, there is no study on this problematic. SimGrid~\cite{SimGrid,casanova+legrand+quinson.2008.simgrid,casanova+giersch+legrand+al.2014.versatile} is a discrete event simulation framework to study the behavior of large-scale distributed computing platforms as Grids, Peer-to-Peer systems, Clouds and High Performance Computation systems. It is widely used to simulate and evaluate heuristics, prototype applications or even assess legacy MPI applications. It is still actively developed by the scientific community and distributed as an open source software. %%%%%%%%%%%%%%%%%%%%%%%%% +% SimGrid~\cite{SimGrid,casanova+legrand+quinson.2008.simgrid,casanova+giersch+legrand+al.2014.versatile} +% is a simulation framework to study the behavior of large-scale distributed +% systems. As its name suggests, it emanates from the grid computing community, +% but is nowadays used to study grids, clouds, HPC or peer-to-peer systems. The +% early versions of SimGrid date back from 1999, but it is still actively +% developed and distributed as an open source software. Today, it is one of the +% major generic tools in the field of simulation for large-scale distributed +% systems. + +SimGrid provides several programming interfaces: MSG to simulate Concurrent +Sequential Processes, SimDAG to simulate DAGs of (parallel) tasks, and SMPI to +run real applications written in MPI~\cite{MPI}. Apart from the native C +interface, SimGrid provides bindings for the C++, Java, Lua and Ruby programming +languages. SMPI is the interface that has been used for the work described in +this paper. The SMPI interface implements about \np[\%]{80} of the MPI 2.0 +standard~\cite{bedaride+degomme+genaud+al.2013.toward}, and supports +applications written in C or Fortran, with little or no modifications (cf Section IV - paragraph B). + +Within SimGrid, the execution of a distributed application is simulated by a +single process. The application code is really executed, but some operations, +like communications, are intercepted, and their running time is computed +according to the characteristics of the simulated execution platform. The +description of this target platform is given as an input for the execution, by +means of an XML file. It describes the properties of the platform, such as +the computing nodes with their computing power, the interconnection links with +their bandwidth and latency, and the routing strategy. The scheduling of the +simulated processes, as well as the simulated running time of the application +are computed according to these properties. + +To compute the durations of the operations in the simulated world, and to take +into account resource sharing (e.g. bandwidth sharing between competing +communications), SimGrid uses a fluid model. This allows users to run relatively fast +simulations, while still keeping accurate +results~\cite{bedaride+degomme+genaud+al.2013.toward, + velho+schnorr+casanova+al.2013.validity}. Moreover, depending on the +simulated application, SimGrid/SMPI allows to skip long lasting computations and +to only take their duration into account. When the real computations cannot be +skipped, but the results are unimportant for the simulation results, it is +also possible to share dynamically allocated data structures between +several simulated processes, and thus to reduce the whole memory consumption. +These two techniques can help to run simulations on a very large scale. + +The validity of simulations with SimGrid has been asserted by several studies. +See, for example, \cite{velho+schnorr+casanova+al.2013.validity} and articles +referenced therein for the validity of the network models. Comparisons between +real execution of MPI applications on the one hand, and their simulation with +SMPI on the other hand, are presented in~\cite{guermouche+renard.2010.first, + clauss+stillwell+genaud+al.2011.single, + bedaride+degomme+genaud+al.2013.toward}. All these works conclude that +SimGrid is able to simulate pretty accurately the real behavior of the +applications. %%%%%%%%%%%%%%%%%%%%%%%%% \section{Two-stage multisplitting methods} @@ -522,7 +567,8 @@ architectures and scaling up the input matrix size} Input matrix size & N$_{x}$ x N$_{y}$ x N$_{z}$ =150 x 150 x 150\\ %\hline - & N$_{x}$ x N$_{y}$ x N$_{z}$ =170 x 170 x 170 \\ \hline \end{tabular} -\caption{Test conditions: various grid configurations with the input matix size N$_{x}$=150 or N$_{x}$=170 \RC{N2 n'est pas défini..}\RC{Nx est défini, Ny? Nz?}} +\caption{Test conditions: various grid configurations with the input matix size N$_{x}$=150 or N$_{x}$=170 \RC{N2 n'est pas défini..}\RC{Nx est défini, Ny? Nz?} +\AG{La lettre 'x' n'est pas le symbole de la multiplication. Utiliser \texttt{\textbackslash times}. Idem dans le texte, les figures, etc.}} \label{tab:01} \end{center} \end{table} @@ -545,7 +591,8 @@ multisplitting method. \begin{center} \includegraphics[width=100mm]{cluster_x_nodes_nx_150_and_nx_170.pdf} \end{center} - \caption{Various grid configurations with the input matrix size N$_{x}$=150 and N$_{x}$=170\RC{idem}} + \caption{Various grid configurations with the input matrix size N$_{x}$=150 and N$_{x}$=170\RC{idem} +\AG{Utiliser le point comme séparateur décimal et non la virgule. Idem dans les autres figures.}} \label{fig:01} \end{figure} @@ -587,7 +634,8 @@ the network speed drops down (variation of 12.5\%), the difference between t \begin{figure} [ht!] \centering \includegraphics[width=100mm]{cluster_x_nodes_n1_x_n2.pdf} -\caption{Grid 2x16 and 4x8 with networks N1 vs N2} +\caption{Grid 2x16 and 4x8 with networks N1 vs N2 +\AG{\np{8E-6}, \np{5E-6} au lieu de 8E-6, 5E-6}} \label{fig:02} \end{figure} %\end{wrapfigure} @@ -612,7 +660,8 @@ the network speed drops down (variation of 12.5\%), the difference between t \begin{figure} [ht!] \centering \includegraphics[width=100mm]{network_latency_impact_on_execution_time.pdf} -\caption{Network latency impacts on execution time} +\caption{Network latency impacts on execution time +\AG{\np{E-6}}} \label{fig:03} \end{figure} @@ -646,7 +695,8 @@ magnitude with a latency of $8.10^{-6}$. \begin{figure} [ht!] \centering \includegraphics[width=100mm]{network_bandwith_impact_on_execution_time.pdf} -\caption{Network bandwith impacts on execution time} +\caption{Network bandwith impacts on execution time +\AG{``Execution time'' avec un 't' minuscule}. Idem autres figures.} \label{fig:04} \end{figure} @@ -814,7 +864,8 @@ geographically distant clusters through the internet. \hline \end{mytable} %\end{table} - \caption{Relative gain of the multisplitting algorithm compared with the classical GMRES} + \caption{Relative gain of the multisplitting algorithm compared with the classical GMRES +\AG{C'est un tableau, pas une figure}} \label{fig:07} \end{figure} @@ -830,6 +881,7 @@ This work is partially funded by the Labex ACTION program (contract ANR-11-LABX- \bibliographystyle{wileyj} \bibliography{biblio} + \end{document} %%% Local Variables: