X-Git-Url: https://bilbo.iut-bm.univ-fcomte.fr/and/gitweb/rce2015.git/blobdiff_plain/f98e8137319ffebaec402d37b163f962c34a82b9..9793696f84bb746d5af3969fb0bc9105f9cb3a99:/paper.tex diff --git a/paper.tex b/paper.tex index 9e09b31..fa447f6 100644 --- a/paper.tex +++ b/paper.tex @@ -70,8 +70,8 @@ -\begin{document} \RCE{Titre a confirmer.} \title{Comparative performance -analysis of simulated grid-enabled numerical iterative algorithms} +\begin{document} +\title{Grid-enabled simulation of large-scale linear iterative solvers} %\itshape{\journalnamelc}\footnotemark[2]} \author{Charles Emile Ramamonjisoa\affil{1}, @@ -165,34 +165,30 @@ application on a given multi-core architecture. Finding good resource allocations policies under varying CPU power, network speeds and loads is very challenging and labor intensive~\cite{Calheiros:2011:CTM:1951445.1951450}. This problematic is even more difficult for the asynchronous scheme where a small -parameter variation of the execution platform can lead to very different numbers -of iterations to reach the converge and so to very different execution times. In -this challenging context we think that the use of a simulation tool can greatly -leverage the possibility of testing various platform scenarios. - -The main contribution of this paper is to show that the use of a simulation tool -(i.e. the SimGrid toolkit~\cite{SimGrid}) in the context of real parallel -applications (i.e. large linear system solvers) can help developers to better -tune their application for a given multi-core architecture. To show the validity -of this approach we first compare the simulated execution of the multisplitting -algorithm with the GMRES (Generalized Minimal Residual) -solver~\cite{saad86} in synchronous mode. - -\LZK{Pas trop convainquant comme argument pour valider l'approche de simulation. \\On peut dire par exemple: on a pu simuler différents algos itératifs à large échelle (le plus connu GMRES et deux variantes de multisplitting) et la simulation nous a permis (sans avoir le vrai matériel) de déterminer quelle serait la meilleure solution pour une telle configuration de l'archi ou vice versa.\\A revoir...} - -The obtained results on different -simulated multi-core architectures confirm the real results previously obtained -on non simulated architectures. - -\LZK{Il n y a pas dans la partie expé cette comparaison et confirmation des résultats entre la simulation et l'exécution réelle des algos sur les vrais clusters.\\ Sinon on pourrait ajouter dans la partie expé une référence vers le journal supercomput de krylov multi pour confirmer que cette méthode est meilleure que GMRES sur les clusters large échelle.} - -We also confirm the efficiency of the -asynchronous multisplitting algorithm compared to the synchronous GMRES. - -\LZK{P.S.: Pour tout le papier, le principal objectif n'est pas de faire des comparaisons entre des méthodes itératives!!\\Sinon, les deux algorithmes Krylov multisplitting synchrone et multisplitting asynchrone sont plus efficaces que GMRES sur des clusters à large échelle.\\Et préciser, si c'est vraiment le cas, que le multisplitting asynchrone est plus efficace et adapté aux clusters distants par rapport aux deux autres algos (je n'ai pas encore lu la partie expé)} - -In -this way and with a simple computing architecture (a laptop) SimGrid allows us +parameter variation of the execution platform and of the application data can +lead to very different numbers of iterations to reach the converge and so to +very different execution times. In this challenging context we think that the +use of a simulation tool can greatly leverage the possibility of testing various +platform scenarios. + +The {\bf main contribution of this paper} is to show that the use of a +simulation tool (i.e. the SimGrid toolkit~\cite{SimGrid}) in the context of real +parallel applications (i.e. large linear system solvers) can help developers to +better tune their application for a given multi-core architecture. To show the +validity of this approach we first compare the simulated execution of the Krylov +multisplitting algorithm with the GMRES (Generalized Minimal Residual) +solver~\cite{saad86} in synchronous mode. The simulation results allow us to +determine which method to choose given a specified multi-core architecture. +Moreover the obtained results on different simulated multi-core architectures +confirm the real results previously obtained on non simulated architectures. +More precisely the simulated results are in accordance (i.e. with the same order +of magnitude) with the works presented in~\cite{couturier15}, which show that +the synchronous multisplitting method is more efficient than GMRES for large +scale clusters. Simulated results also confirm the efficiency of the +asynchronous multisplitting algorithm compared to the synchronous GMRES +especially in case of geographically distant clusters. + +In this way and with a simple computing architecture (a laptop) SimGrid allows us to run a test campaign of a real parallel iterative applications on different simulated multi-core architectures. To our knowledge, there is no related work on the large-scale multi-core simulation of a real synchronous and @@ -205,8 +201,6 @@ Section~\ref{sec:04} details the different solvers that we use. Finally our experimental results are presented in section~\ref{sec:expe} followed by some concluding remarks and perspectives. -\LZK{Proposition d'un titre pour le papier: Grid-enabled simulation of large-scale linear iterative solvers.} - \section{The asynchronous iteration model and the motivations of our work} \label{sec:asynchro} @@ -631,9 +625,7 @@ speed inter-cluster network (N1) and also on a less performant network (N2). Figure~\ref{fig:02} shows that end users will reduce the execution time for both algorithms when using a grid architecture like 4x16 or 8x8: the reduction is about $2$. The results depict also that when the network speed drops down (variation of 12.5\%), the difference between the two Multisplitting algorithms execution times can reach more than 25\%. -%\RC{c'est pas clair : la différence entre quoi et quoi?} -%\DL{pas clair} -%\RCE{Modifie} + %\begin{wrapfigure}{l}{100mm} @@ -778,10 +770,16 @@ on the algorithms performance in varying the CPU power of the clusters nodes from $1$ to $19$ GFlops. The outputs depicted in Figure~\ref{fig:06} confirm the performance gain, around $95\%$ for both of the two methods, after adding more powerful CPU. +\ \\ +%\DL{il faut une conclusion sur ces tests : ils confirment les résultats déjà +%obtenus en grandeur réelle. Donc c'est une aide précieuse pour les dev. Pas +%besoin de déployer sur une archi réelle} -\DL{il faut une conclusion sur ces tests : ils confirment les résultats déjà -obtenus en grandeur réelle. Donc c'est une aide précieuse pour les dev. Pas -besoin de déployer sur une archi réelle} +To conclude these series of experiments, with SimGrid we have been able to make +many simulations with many parameters variations. Doing all these experiments +with a real platform is most of the time not possible. Moreover the behavior of +both GMRES and Krylov multisplitting methods is in accordance with larger real +executions on large scale supercomputer~\cite{couturier15}. \subsection{Comparing GMRES in native synchronous mode and the multisplitting algorithm in asynchronous mode} @@ -877,7 +875,29 @@ geographically distant clusters through the internet. \section{Conclusion} -CONCLUSION + +In this paper we have presented the simulation of the execution of three +different parallel solvers on some multi-core architectures. We have show that +the SimGrid toolkit is an interesting simulation tool that has allowed us to +determine which method to choose given a specified multi-core architecture. +Moreover the simulated results are in accordance (i.e. with the same order of +magnitude) with the works presented in~\cite{couturier15}. Simulated results +also confirm the efficiency of the asynchronous multisplitting +algorithm compared to the synchronous GMRES especially in case of +geographically distant clusters. + +These results are important since it is very time consuming to find optimal +configuration and deployment requirements for a given application on a given +multi-core architecture. Finding good resource allocations policies under +varying CPU power, network speeds and loads is very challenging and labor +intensive. This problematic is even more difficult for the asynchronous +scheme where a small parameter variation of the execution platform and of the +application data can lead to very different numbers of iterations to reach the +converge and so to very different execution times. + + +Our future works... + %\section*{Acknowledgment} @@ -886,9 +906,7 @@ This work is partially funded by the Labex ACTION program (contract ANR-11-LABX- \bibliographystyle{wileyj} \bibliography{biblio} -\AG{Warning bibtex à corriger (% - \texttt{empty booktitle in Bru95}% -).} + \end{document}