\end{figure}
-According to the results of Figure~\ref{fig:03}, a degradation of the network
-latency from $8.10^{-6}$ to $6.10^{-5}$ implies an absolute time increase of more
-than $75\%$ (resp. $82\%$) of the execution for the classical GMRES (resp. Krylov
-multisplitting) algorithm. In addition, it appears that the Krylov
-multisplitting method tolerates more the network latency variation with a less
-rate increase of the execution time. Consequently, in the worst case
-($lat=6.10^{-5 }$), the execution time for GMRES is almost the double than the
-time of the Krylov multisplitting, even though, the performance was on the same
-order of magnitude with a latency of $8.10^{-6}$.
+According to the results of Figure~\ref{fig:03}, a degradation of the network
+latency from $8.10^{-6}$ to $6.10^{-5}$ implies an absolute time increase of
+more than $75\%$ (resp. $82\%$) of the execution for the classical GMRES
+(resp. Krylov multisplitting) algorithm. In addition, it appears that the
+Krylov multisplitting method tolerates more the network latency variation with a
+less rate increase of the execution time.\RC{Les 2 précédentes phrases me
+ semblent en contradiction....} Consequently, in the worst case ($lat=6.10^{-5
+}$), the execution time for GMRES is almost the double than the time of the
+Krylov multisplitting, even though, the performance was on the same order of
+magnitude with a latency of $8.10^{-6}$.
\subsubsection{Network bandwidth impacts on performance}
\ \\
Network & N1 : bw=1Gbs - lat=5.10$^{-5}$ \\ %\hline
Input matrix size & N$_{x}$ x N$_{y}$ x N$_{z}$ =150 x 150 x 150\\ \hline \\
\end{tabular}
-\caption{Test conditions: Network bandwidth impacts}
+\caption{Test conditions: Network bandwidth impacts\RC{Qu'est ce qui varie ici? Il n'y a pas de variation dans le tableau}}
\label{tab:04}
\end{table}
time for both algorithms increases when the input matrix size also increases.
But the interesting results are:
\begin{enumerate}
- \item the drastic increase ($10$ times) \RC{Je ne vois pas cela sur la figure}
-\RCE{Corrige} of the number of iterations needed to reach the convergence for the classical
-GMRES algorithm when the matrix size go beyond $N_{x}=150$;
+ \item the drastic increase ($10$ times) of the number of iterations needed to
+ reach the convergence for the classical GMRES algorithm when the matrix size
+ go beyond $N_{x}=150$; \RC{C'est toujours pas clair... ok le nommbre d'itérations est 10 fois plus long mais la suite de la phrase ne veut rien dire}
\item the classical GMRES execution time is almost the double for $N_{x}=140$
compared with the Krylov multisplitting method.
\end{enumerate}