]> AND Private Git Repository - rce2015.git/commitdiff
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
changement des x et future work
authorcouturie <raphael.couturier@univ-fcomte.Fr>
Thu, 7 May 2015 17:07:27 +0000 (19:07 +0200)
committercouturie <raphael.couturier@univ-fcomte.Fr>
Thu, 7 May 2015 17:07:27 +0000 (19:07 +0200)
paper.tex

index cda1fddd3c8a6b286add54b1a3ab9afc663cf23b..c4c39393aeefed46eabaa715b5271a533557d8ad 100644 (file)
--- a/paper.tex
+++ b/paper.tex
@@ -563,8 +563,8 @@ architectures and scaling up the input matrix size}
  \hline
  Grid Architecture & 2x16, 4x8, 4x16 and 8x8\\ %\hline
  Network & N2 : bw=1Gbits/s - lat=5.10$^{-5}$ \\ %\hline
  \hline
  Grid Architecture & 2x16, 4x8, 4x16 and 8x8\\ %\hline
  Network & N2 : bw=1Gbits/s - lat=5.10$^{-5}$ \\ %\hline
- Input matrix size & N$_{x}$ x N$_{y}$ x N$_{z}$ =150 x 150 x 150\\ %\hline
- - &  N$_{x}$ x N$_{y}$ x N$_{z}$  =170 x 170 x 170    \\ \hline
+ Input matrix size & N$_{x}$ $\times$ N$_{y}$ $\times$ N$_{z}$ =150 $\times$ 150 $\times$ 150\\ %\hline
+ - &  N$_{x}$ $\times$ N$_{y}$ $\times$ N$_{z}$  =170 $\times$ 170 $\times$ 170    \\ \hline
  \end{tabular}
 \caption{Test conditions: various grid configurations with the input matix size N$_{x}$=150 or N$_{x}$=170 \RC{N2 n'est pas défini..}\RC{Nx est défini, Ny? Nz?}
 \AG{La lettre 'x' n'est pas le symbole de la multiplication. Utiliser \texttt{\textbackslash times}.  Idem dans le texte, les figures, etc.}}
  \end{tabular}
 \caption{Test conditions: various grid configurations with the input matix size N$_{x}$=150 or N$_{x}$=170 \RC{N2 n'est pas défini..}\RC{Nx est défini, Ny? Nz?}
 \AG{La lettre 'x' n'est pas le symbole de la multiplication. Utiliser \texttt{\textbackslash times}.  Idem dans le texte, les figures, etc.}}
@@ -590,7 +590,7 @@ multisplitting method.
   \begin{center}
     \includegraphics[width=100mm]{cluster_x_nodes_nx_150_and_nx_170.pdf}
   \end{center}
   \begin{center}
     \includegraphics[width=100mm]{cluster_x_nodes_nx_150_and_nx_170.pdf}
   \end{center}
-  \caption{Various grid configurations with the input matrix size N$_{x}$=150 and N$_{x}$=170\RC{idem}
+  \caption{Various grid configurations with the input matrix size $N_{x}=150$ and $N_{x}=170$\RC{idem}
 \AG{Utiliser le point comme séparateur décimal et non la virgule.  Idem dans les autres figures.}}
   \label{fig:01}
 \end{figure}
 \AG{Utiliser le point comme séparateur décimal et non la virgule.  Idem dans les autres figures.}}
   \label{fig:01}
 \end{figure}
@@ -612,7 +612,7 @@ $40\%$ better (resp. $48\%$) when running from 2x16=32 to 8x8=64 processors. \RC
  Grid Architecture & 2x16, 4x8\\ %\hline
  Network & N1 : bw=10Gbs-lat=8.10$^{-6}$ \\ %\hline
  - & N2 : bw=1Gbs-lat=5.10$^{-5}$ \\
  Grid Architecture & 2x16, 4x8\\ %\hline
  Network & N1 : bw=10Gbs-lat=8.10$^{-6}$ \\ %\hline
  - & N2 : bw=1Gbs-lat=5.10$^{-5}$ \\
- Input matrix size & N$_{x}$ x N$_{y}$ x N$_{z}$ =150 x 150 x 150\\ \hline
+ Input matrix size & $N_{x} \times N_{y} \times N_{z} =150 \times 150 \times 150$\\ \hline
  \end{tabular}
 \caption{Test conditions: grid 2x16 and 4x8 with  networks N1 vs N2}
 \label{tab:02}
  \end{tabular}
 \caption{Test conditions: grid 2x16 and 4x8 with  networks N1 vs N2}
 \label{tab:02}
@@ -646,7 +646,7 @@ the  network speed  drops down (variation of 12.5\%), the  difference between  t
  \hline
  Grid Architecture & 2x16\\ %\hline
  Network & N1 : bw=1Gbs \\ %\hline
  \hline
  Grid Architecture & 2x16\\ %\hline
  Network & N1 : bw=1Gbs \\ %\hline
- Input matrix size & N$_{x}$ x N$_{y}$ x N$_{z}$ =150 x 150 x 150\\ \hline
+ Input matrix size & $N_{x} \times N_{y} \times N_{z} = 150 \times 150 \times 150$\\ \hline
  \end{tabular}
 \caption{Test conditions: network latency impacts}
 \label{tab:03}
  \end{tabular}
 \caption{Test conditions: network latency impacts}
 \label{tab:03}
@@ -682,7 +682,7 @@ magnitude with a latency of $8.10^{-6}$.
  \hline
  Grid Architecture & 2x16\\ %\hline
  Network & N1 : bw=1Gbs - lat=5.10$^{-5}$ \\ %\hline
  \hline
  Grid Architecture & 2x16\\ %\hline
  Network & N1 : bw=1Gbs - lat=5.10$^{-5}$ \\ %\hline
- Input matrix size & N$_{x}$ x N$_{y}$ x N$_{z}$ =150 x 150 x 150\\ \hline \\
+ Input matrix size & $N_{x} \times N_{y} \times N_{z} =150 \times 150 \times 150$\\ \hline \\
  \end{tabular}
 \caption{Test conditions: Network bandwidth impacts\RC{Qu'est ce qui varie ici? Il n'y a pas de variation dans le tableau}}
 \label{tab:04}
  \end{tabular}
 \caption{Test conditions: Network bandwidth impacts\RC{Qu'est ce qui varie ici? Il n'y a pas de variation dans le tableau}}
 \label{tab:04}
@@ -711,7 +711,7 @@ of $40\%$ which is only around $24\%$ for the classical GMRES.
  \hline
  Grid Architecture & 4x8\\ %\hline
  Network & N2 : bw=1Gbs - lat=5.10$^{-5}$ \\
  \hline
  Grid Architecture & 4x8\\ %\hline
  Network & N2 : bw=1Gbs - lat=5.10$^{-5}$ \\
- Input matrix size & N$_{x}$ = From 40 to 200\\ \hline
+ Input matrix size & $N_{x}$ = From 40 to 200\\ \hline
  \end{tabular}
 \caption{Test conditions: Input matrix size impacts}
 \label{tab:05}
  \end{tabular}
 \caption{Test conditions: Input matrix size impacts}
 \label{tab:05}
@@ -751,7 +751,7 @@ grid 2x16 leading to the same conclusion.
  \hline
  Grid architecture & 2x16\\ %\hline
  Network & N2 : bw=1Gbs - lat=5.10$^{-5}$ \\ %\hline
  \hline
  Grid architecture & 2x16\\ %\hline
  Network & N2 : bw=1Gbs - lat=5.10$^{-5}$ \\ %\hline
- Input matrix size & N$_{x}$ = 150 x 150 x 150\\ \hline
+ Input matrix size & $N_{x} = 150 \times 150 \times 150$\\ \hline
  \end{tabular}
 \caption{Test conditions: CPU Power impacts}
 \label{tab:06}
  \end{tabular}
 \caption{Test conditions: CPU Power impacts}
 \label{tab:06}
@@ -814,7 +814,7 @@ The test conditions are summarized in the table~\ref{tab:07}: \\
  Processors Power & 1 GFlops to 1.5 GFlops\\
    Intra-Network & bw=1.25 Gbits - lat=5.10$^{-5}$ \\ %\hline
    Inter-Network & bw=5 Mbits - lat=2.10$^{-2}$\\
  Processors Power & 1 GFlops to 1.5 GFlops\\
    Intra-Network & bw=1.25 Gbits - lat=5.10$^{-5}$ \\ %\hline
    Inter-Network & bw=5 Mbits - lat=2.10$^{-2}$\\
- Input matrix size & N$_{x}$ = From 62 to 150\\ %\hline
+ Input matrix size & $N_{x}$ = From 62 to 150\\ %\hline
  Residual error precision & 10$^{-5}$ to 10$^{-9}$\\ \hline \\
  \end{tabular}
 \caption{Test conditions: GMRES in synchronous mode vs Krylov Multisplitting in asynchronous mode}
  Residual error precision & 10$^{-5}$ to 10$^{-9}$\\ \hline \\
  \end{tabular}
 \caption{Test conditions: GMRES in synchronous mode vs Krylov Multisplitting in asynchronous mode}
@@ -894,7 +894,11 @@ application data can lead to very different numbers of iterations to reach the
 converge and so to very different execution times.
 
 
 converge and so to very different execution times.
 
 
-Our future works...
+In future works, we  plan to investigate how to simulate  the behavior of really
+large scale  applications. For  example, if  we are  interested to  simulate the
+execution of the solvers of this paper with thousand or even dozens of thousands
+or core,  it is not possible  to do that with  SimGrid. In fact, this  tool will
+make the real computation. So we plan to focus our research on that problematic.