From: couturie Date: Thu, 7 May 2015 15:37:16 +0000 (+0200) Subject: Merge branch 'master' of ssh://bilbo.iut-bm.univ-fcomte.fr/rce2015 X-Git-Url: https://bilbo.iut-bm.univ-fcomte.fr/and/gitweb/rce2015.git/commitdiff_plain/28c087d41ba7fc0a10381aa9d9f1d9b1d48240f1?hp=73774e6e571d69ea4617d9b1998609410f4f2520 Merge branch 'master' of ssh://bilbo.iut-bm.univ-fcomte.fr/rce2015 --- diff --git a/paper.tex b/paper.tex index 5fcebfb..5122a84 100644 --- a/paper.tex +++ b/paper.tex @@ -830,7 +830,7 @@ Again, comprehensive and extensive tests have been conducted with different parameters as the CPU power, the network parameters (bandwidth and latency) and with different problem size. The relative gains greater than $1$ between the two algorithms have been captured after each step of the test. In -Figure~\ref{fig:07} are reported the best grid configurations allowing +Table~\ref{tab:08} are reported the best grid configurations allowing the multisplitting method to be more than $2.5$ times faster than the classical GMRES. These experiments also show the relative tolerance of the multisplitting algorithm when using a low speed network as usually observed with @@ -845,7 +845,7 @@ geographically distant clusters through the internet. \end{tabular}} -\begin{figure}[!t] +\begin{table}[!t] \centering %\begin{table} % \caption{Relative gain of the multisplitting algorithm compared with the classical GMRES} @@ -872,10 +872,9 @@ geographically distant clusters through the internet. \hline \end{mytable} %\end{table} - \caption{Relative gain of the multisplitting algorithm compared with the classical GMRES -\AG{C'est un tableau, pas une figure}} - \label{fig:07} -\end{figure} + \caption{Relative gain of the multisplitting algorithm compared with the classical GMRES} + \label{tab:08} +\end{table} \section{Conclusion}