From: lilia Date: Thu, 7 May 2015 19:07:56 +0000 (+0200) Subject: Corrections coquilles sec 02 X-Git-Url: https://bilbo.iut-bm.univ-fcomte.fr/and/gitweb/rce2015.git/commitdiff_plain/56dc4d55704617d8f459826573f8bd2beeb5b5b3?ds=sidebyside Corrections coquilles sec 02 --- diff --git a/paper.tex b/paper.tex index 094f1aa..7fd9704 100644 --- a/paper.tex +++ b/paper.tex @@ -204,11 +204,11 @@ concluding remarks and perspectives. \section{The asynchronous iteration model and the motivations of our work} \label{sec:asynchro} -Asynchronous iterative methods have been studied for many years theoritecally and +Asynchronous iterative methods have been studied for many years theoretically and practically. Many methods have been considered and convergence results have been proved. These methods can be used to solve, in parallel, fixed point problems (i.e. problems for which the solution is $x^\star =f(x^\star)$. In practice, -asynchronous iterations methods can be used to solve, for example, linear and +asynchronous iteration methods can be used to solve, for example, linear and non-linear systems of equations or optimization problems, interested readers are invited to read~\cite{BT89,bahi07}. @@ -218,7 +218,7 @@ algorithm that supports both the synchronous or the asynchronous iteration model requires very few modifications to be able to be executed in both variants. In practice, only the communications and convergence detection are different. In the synchronous mode, iterations are synchronized whereas in the asynchronous -one, they are not. It should be noticed that non blocking communications can be +one, they are not. It should be noticed that non-blocking communications can be used in both modes. Concerning the convergence detection, synchronous variants can use a global convergence procedure which acts as a global synchronization point. In the asynchronous model, the convergence detection is more tricky as @@ -226,17 +226,17 @@ it must not synchronize all the processors. Interested readers can consult~\cite{myBCCV05c,bahi07,ccl09:ij}. The number of iterations required to reach the convergence is generally greater -for the asynchronous scheme (this number depends depends on the delay of the +for the asynchronous scheme (this number depends on the delay of the messages). Note that, it is not the case in the synchronous mode where the number of iterations is the same than in the sequential mode. In this way, the set of the parameters of the platform (number of nodes, power of nodes, -inter and intra clusters bandwidth and latency, \ldots) and of the +inter and intra clusters bandwidth and latency,~\ldots) and of the application can drastically change the number of iterations required to get the convergence. It follows that asynchronous iterative algorithms are difficult to optimize since the financial and deployment costs on large scale multi-core -architecture are often very important. So, prior to delpoyment and tests it +architectures are often very important. So, prior to deployment and tests it seems very promising to be able to simulate the behavior of asynchronous -iterative algorithms. The problematic is then to show that the results produce +iterative algorithms. The problematic is then to show that the results produced by simulation are in accordance with reality i.e. of the same order of magnitude. To our knowledge, there is no study on this problematic.