From: couturie Date: Thu, 7 May 2015 13:08:01 +0000 (+0200) Subject: pas mal de choses à éclaircir X-Git-Url: https://bilbo.iut-bm.univ-fcomte.fr/and/gitweb/rce2015.git/commitdiff_plain/a83a04b7c1f7e7ac3a6894e21e4e15cd8090dc65?hp=--cc pas mal de choses à éclaircir --- a83a04b7c1f7e7ac3a6894e21e4e15cd8090dc65 diff --git a/paper.tex b/paper.tex index 6ac52c3..af2303e 100644 --- a/paper.tex +++ b/paper.tex @@ -614,15 +614,16 @@ the network speed drops down (variation of 12.5\%), the difference between t \end{figure} -According to the results of Figure~\ref{fig:03}, a degradation of the network -latency from $8.10^{-6}$ to $6.10^{-5}$ implies an absolute time increase of more -than $75\%$ (resp. $82\%$) of the execution for the classical GMRES (resp. Krylov -multisplitting) algorithm. In addition, it appears that the Krylov -multisplitting method tolerates more the network latency variation with a less -rate increase of the execution time. Consequently, in the worst case -($lat=6.10^{-5 }$), the execution time for GMRES is almost the double than the -time of the Krylov multisplitting, even though, the performance was on the same -order of magnitude with a latency of $8.10^{-6}$. +According to the results of Figure~\ref{fig:03}, a degradation of the network +latency from $8.10^{-6}$ to $6.10^{-5}$ implies an absolute time increase of +more than $75\%$ (resp. $82\%$) of the execution for the classical GMRES +(resp. Krylov multisplitting) algorithm. In addition, it appears that the +Krylov multisplitting method tolerates more the network latency variation with a +less rate increase of the execution time.\RC{Les 2 précédentes phrases me + semblent en contradiction....} Consequently, in the worst case ($lat=6.10^{-5 +}$), the execution time for GMRES is almost the double than the time of the +Krylov multisplitting, even though, the performance was on the same order of +magnitude with a latency of $8.10^{-6}$. \subsubsection{Network bandwidth impacts on performance} \ \\ @@ -634,7 +635,7 @@ order of magnitude with a latency of $8.10^{-6}$. Network & N1 : bw=1Gbs - lat=5.10$^{-5}$ \\ %\hline Input matrix size & N$_{x}$ x N$_{y}$ x N$_{z}$ =150 x 150 x 150\\ \hline \\ \end{tabular} -\caption{Test conditions: Network bandwidth impacts} +\caption{Test conditions: Network bandwidth impacts\RC{Qu'est ce qui varie ici? Il n'y a pas de variation dans le tableau}} \label{tab:04} \end{table} @@ -680,9 +681,9 @@ In these experiments, the input matrix size has been set from $N_{x} = N_{y} time for both algorithms increases when the input matrix size also increases. But the interesting results are: \begin{enumerate} - \item the drastic increase ($10$ times) \RC{Je ne vois pas cela sur la figure} -\RCE{Corrige} of the number of iterations needed to reach the convergence for the classical -GMRES algorithm when the matrix size go beyond $N_{x}=150$; + \item the drastic increase ($10$ times) of the number of iterations needed to + reach the convergence for the classical GMRES algorithm when the matrix size + go beyond $N_{x}=150$; \RC{C'est toujours pas clair... ok le nommbre d'itérations est 10 fois plus long mais la suite de la phrase ne veut rien dire} \item the classical GMRES execution time is almost the double for $N_{x}=140$ compared with the Krylov multisplitting method. \end{enumerate}