From: couturie Date: Tue, 5 May 2015 14:10:06 +0000 (+0200) Subject: relecture jusqu'à fin de section 4 X-Git-Url: https://bilbo.iut-bm.univ-fcomte.fr/and/gitweb/rce2015.git/commitdiff_plain/f705ba070d8b46cd38e2cdf073408f9dcfddb6ef relecture jusqu'à fin de section 4 --- diff --git a/paper.tex b/paper.tex index bae87d3..dcdfcfa 100644 --- a/paper.tex +++ b/paper.tex @@ -223,12 +223,12 @@ consult~\cite{myBCCV05c,bahi07,ccl09:ij}. \label{sec:04} \subsection{Synchronous and asynchronous two-stage methods for sparse linear systems} \label{sec:04.01} -In this paper we focus on two-stage multisplitting methods in their both versions synchronous and asynchronous~\cite{Frommer92,Szyld92,Bru95}. These iterative methods are based on multisplitting methods~\cite{O'leary85,White86,Alefeld97} and use two nested iterations: the outer iteration and the inner iteration. Let us consider the following sparse linear system of $n$ equations in $\mathbb{R}$ +In this paper we focus on two-stage multisplitting methods in their both versions (synchronous and asynchronous)~\cite{Frommer92,Szyld92,Bru95}. These iterative methods are based on multisplitting methods~\cite{O'leary85,White86,Alefeld97} and use two nested iterations: the outer iteration and the inner iteration. Let us consider the following sparse linear system of $n$ equations in $\mathbb{R}$ \begin{equation} Ax=b, \label{eq:01} \end{equation} -where $A$ is a sparse square and nonsingular matrix, $b$ is the right-hand side and $x$ is the solution of the system. Our work in this paper is restricted to the block Jacobi splitting method. This approach of multisplitting consists in partitioning the matrix $A$ into $L$ horizontal band matrices of order $\frac{n}{L}\times n$ without overlapping (i.e. sub-vectors $\{x_\ell\}_{1\leq\ell\leq L}$ are disjoint). The two-stage multisplitting methods solve the linear system~(\ref{eq:01}) iteratively as follows +where $A$ is a sparse square and nonsingular matrix, $b$ is the right-hand side and $x$ is the solution of the system. Our work in this paper is restricted to the block Jacobi splitting method. This approach of multisplitting consists in partitioning the matrix $A$ into $L$ horizontal band matrices of order $\frac{n}{L}\times n$ without overlapping (i.e. sub-vectors $\{x_\ell\}_{1\leq\ell\leq L}$ are disjoint). Two-stage multisplitting methods solve the linear system~(\ref{eq:01}) iteratively as follows \begin{equation} x_\ell^{k+1} = A_{\ell\ell}^{-1}(b_\ell - \displaystyle\sum^{L}_{\substack{m=1\\m\neq\ell}}{A_{\ell m}x^k_m}),\mbox{~for~}\ell=1,\ldots,L\mbox{~and~}k=1,2,3,\ldots \label{eq:02} @@ -259,12 +259,12 @@ where right-hand sides $c_\ell=b_\ell-\sum_{m\neq\ell}A_{\ell m}x_m$ are compute %\end{algorithm} \end{figure} -In this paper, we propose two algorithms of two-stage multisplitting methods. The first algorithm is based on asynchronous model which allows the communications to be overlapped by computations and reduces the idle times resulting from the synchronizations. So in the asynchronous mode, our two-stage algorithm uses asynchronous outer iterations and asynchronous communications between clusters. The communications (i.e. lines~\ref{send} and~\ref{recv} in Figure~\ref{alg:01}) are performed by message passing using MPI non-blocking communication routines. The convergence of the asynchronous iterations is detected when all clusters have locally converged +In this paper, we propose two algorithms of two-stage multisplitting methods. The first algorithm is based on the asynchronous model which allows the communications to be overlapped by computations and reduces the idle times resulting from the synchronizations. So in the asynchronous mode, our two-stage algorithm uses asynchronous outer iterations and asynchronous communications between clusters. The communications (i.e. lines~\ref{send} and~\ref{recv} in Figure~\ref{alg:01}) are performed by message passing using MPI non-blocking communication routines. The convergence of the asynchronous iterations is detected when all clusters have locally converged \begin{equation} k\geq\MIM\mbox{~or~}\|x_\ell^{k+1}-x_\ell^k\|_{\infty }\leq\TOLM, \label{eq:04} \end{equation} -where $\MIM$ is the maximum number of outer iterations and $\TOLM$ is the tolerance threshold for the two-stage algorithm. +where $\MIM$ is the maximum number of outer iterations and $\TOLM$ is the tolerance threshold for the two-stage algorithm. The second two-stage algorithm is based on synchronous outer iterations. We propose to use the Krylov iteration based on residual minimization to improve the slow convergence of the multisplitting methods. In this case, a $n\times s$ matrix $S$ is set using solutions issued from the inner iteration \begin{equation} @@ -307,32 +307,48 @@ The algorithm in Figure~\ref{alg:02} includes the procedure of the residual mini \subsection{Simulation of two-stage methods using SimGrid framework} \label{sec:04.02} -One of our objectives when simulating the application in Simgrid is, as in real life, to get accurate results (solutions of the problem) but also ensure the test reproducibility under the same conditions. According our experience, very few modifications are required to adapt a MPI program to run in Simgrid simulator using SMPI (Simulator MPI).The first modification is to include SMPI libraries and related header files (smpi.h). The second and important modification is to eliminate all global variables in moving them to local subroutine or using a Simgrid selector called "runtime automatic switching" (smpi/privatize\_global\_variables). Indeed, global variables can generate side effects on runtime between the threads running in the same process, generated by the Simgrid to simulate the grid environment.The last modification on the MPI program pointed out for some cases, the review of the sequence of the MPI\_Isend, MPI\_Irecv and MPI\_Waitall instructions which might cause an infinite loop. +One of our objectives when simulating the application in Simgrid is, as in real +life, to get accurate results (solutions of the problem) but also ensure the +test reproducibility under the same conditions. According to our experience, +very few modifications are required to adapt a MPI program for the Simgrid +simulator using SMPI (Simulator MPI). The first modification is to include SMPI +libraries and related header files (smpi.h). The second modification is to +suppress all global variables by replacing them with local variables or using a +Simgrid selector called "runtime automatic switching" +(smpi/privatize\_global\_variables). Indeed, global variables can generate side +effects on runtime between the threads running in the same process, generated by +the Simgrid to simulate the grid environment. \RC{On vire cette phrase ?}The +last modification on the MPI program pointed out for some cases, the review of +the sequence of the MPI\_Isend, MPI\_Irecv and MPI\_Waitall instructions which +might cause an infinite loop. \paragraph{Simgrid Simulator parameters} +\ \\ \noindent Before running a Simgrid benchmark, many parameters for the +computation platform must be defined. For our experiments, we consider platforms +in which several clusters are geographically distant, so there are intra and +inter-cluster communications. In the following, these parameters are described: \begin{itemize} - \item hostfile: Hosts description file. - \item plarform: File describing the platform architecture : clusters (CPU power, + \item hostfile: hosts description file. + \item platform: file describing the platform architecture: clusters (CPU power, \dots{}), intra cluster network description, inter cluster network (bandwidth bw, latency lat, \dots{}). - \item archi : Grid computational description (Number of clusters, Number of + \item archi : grid computational description (number of clusters, number of nodes/processors for each cluster). \end{itemize} - - +\noindent In addition, the following arguments are given to the programs at runtime: \begin{itemize} - \item Maximum number of inner and outer iterations; - \item Inner and outer precisions; - \item Matrix size (N$_{x}$, N$_{y}$ and N$_{z}$); - \item Matrix diagonal value = 6.0; - \item Execution Mode: synchronous or asynchronous. + \item maximum number of inner and outer iterations; + \item inner and outer precisions; + \item matrix size (N$_{x}$, N$_{y}$ and N$_{z}$); + \item matrix diagonal value = 6.0 (for synchronous Krylov multisplitting experiments and 6.2 for asynchronous block Jacobi experiments); \RC{CE tu vérifie, je dis ca de tête} + \item execution mode: synchronous or asynchronous. \end{itemize} -At last, note that the two solver algorithms have been executed with the Simgrid selector -cfg=smpi/running\_power which determines the computational power (here 19GFlops) of the simulator host machine. +It should also be noticed that both solvers have been executed with the Simgrid selector -cfg=smpi/running\_power which determines the computational power (here 19GFlops) of the simulator host machine. %%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%