From 9c62a07698805bbb6ab383b37818dc1974f58425 Mon Sep 17 00:00:00 2001 From: lilia Date: Sat, 9 May 2015 13:07:39 +0200 Subject: [PATCH 1/1] petites modifs dans section 2 --- paper.tex | 10 +++++----- 1 file changed, 5 insertions(+), 5 deletions(-) diff --git a/paper.tex b/paper.tex index e72fa2e..6f1cc96 100644 --- a/paper.tex +++ b/paper.tex @@ -209,7 +209,7 @@ concluding remarks and perspectives. Asynchronous iterative methods have been studied for many years theoretically and practically. Many methods have been considered and convergence results have been proved. These methods can be used to solve, in parallel, fixed point problems -(i.e. problems for which the solution is $x^\star =f(x^\star)$. In practice, +(i.e. problems for which the solution is $x^\star =f(x^\star)$). In practice, asynchronous iteration methods can be used to solve, for example, linear and non-linear systems of equations or optimization problems, interested readers are invited to read~\cite{BT89,bahi07}. @@ -219,8 +219,8 @@ studied. Otherwise, the application is not ensure to reach the convergence. An algorithm that supports both the synchronous or the asynchronous iteration model requires very few modifications to be able to be executed in both variants. In practice, only the communications and convergence detection are different. In -the synchronous mode, iterations are synchronized whereas in the asynchronous -one, they are not. It should be noticed that non-blocking communications can be +the synchronous mode iterations are synchronized, whereas in the asynchronous +one they are not. It should be noticed that non-blocking communications can be used in both modes. Concerning the convergence detection, synchronous variants can use a global convergence procedure which acts as a global synchronization point. In the asynchronous model, the convergence detection is more tricky as @@ -239,8 +239,8 @@ optimize since the financial and deployment costs on large scale multi-core architectures are often very important. So, prior to deployment and tests it seems very promising to be able to simulate the behavior of asynchronous iterative algorithms. The problematic is then to show that the results produced -by simulation are in accordance with reality i.e. of the same order of -magnitude. To our knowledge, there is no study on this problematic. +by simulation are in accordance with reality (i.e. of the same order of +magnitude). To our knowledge, there is no study on this problematic. \section{SimGrid} \label{sec:simgrid} -- 2.39.5