-%%\frame{
-%% \frametitle{Etude des périodes}
-%% \begin{block}{Multiplicité des périodes ?}
-%% Soit $f_0:\mathds{B}^\mathsf{N} \rightarrow \mathds{B}^\mathsf{N}$ la négation vectorielle.
-%% \begin{itemize}
-%% \item $\forall k \in \mathds{N}, Per_{2k+1}(G_{f_0}) = \varnothing, card\left(Per_{2k+2}(G_{f_0})\right)>0$ \vspace{0.3cm} \linebreak $\Rightarrow G_{f_0}$ pas chaotique sur $\mathcal{X}$
-%% \item Cependant :
-%% \begin{itemize}
-%% \item Il y a chaos sur $\mathcal{X}^G = \mathcal{P}\left(\llbracket 1,\mathsf{N}\rrbracket\right)^\mathds{N}\times \mathds{B}^\mathsf{N}$.
-%% \item $G_{f_0}$ possède plus de $n^2$ points périodiques de période $2n$.
-%% \end{itemize}
-%% \end{itemize}
-%% \end{block}
-%% \uncover<2->{
-%% Cette multiplicité des périodes n'est pas le désordre complet...
-%% }
-%%}
+Furthermore, if we denote by $Per_k(f)$ the set of periodic points
+of period $k$ for $f$, we have
+ $\forall k \in \mathds{N}, Per_{2k+1}(G_{f_0}) = \varnothing, card\left(Per_{2k+2}(G_{f_0})\right)>0$.
+\end{proposition}
+
+So $\Rightarrow G_{f_0}$ does not present the existence of points of any period referred as chaos in the article of Li and Yorke~\cite{Li75}.
+However~\cite{GuyeuxThese10}:
+ \begin{itemize}
+ \item This kind of disorder can be stated on $\mathcal{X}^G = \mathcal{P}\left(\llbracket 1,\mathsf{N}\rrbracket\right)^\mathds{N}\times \mathds{B}^\mathsf{N}$.
+ \item $G_{f_0}$ possesses more than $n^2$ points of period $2n$.
+ \end{itemize}
+Additionally, this existence of points of any period has been rejected
+by the community to the benefit of more recent notions of chaos, as
+they are detailed in the following paragraphs.