-%\frame{
-% \frametitle{Métrique et continuité}
-
-%Distance sur $\mathcal{X}:$
-%$$d((S,E);(\check{S};\check{E})) = d_e(E,\check{E}) + d_s(S,\check{S})$$
-
-%\noindent où $\displaystyle{d_e(E,\check{E}) = \sum_{k=1}^\mathsf{N} \delta (E_k, \check{E}_k)}$, ~~et~ $\displaystyle{d_s(S,\check{S}) = \dfrac{9}{\textsf{N}} \sum_{k = 1}^\infty \dfrac{|S^k-\check{S}^k|}{10^k}}$.
-%%\end{block}
-
-%\vspace{0.5cm}
-
-%\begin{alertblock}{Théorème}
-%La fonction $G_f : (\mathcal{X},d) \to (\mathcal{X},d)$ est continue.
-%\end{alertblock}
-
-%}
-
-
-
-% \frame{
-% \frametitle{\'Etude de $(\mathcal{X},d)$}
-% \begin{block}{Propriétés de $(\mathcal{X},d)$}
-% \begin{itemize}
-% \item $\mathcal{X}$ est infini indénombrable
-% \vspace{0.15cm}
-% \item $(\mathcal{X},d)$ est un espace métrique compact, complet et parfait
-% \end{itemize}
-% \end{block}
-%
-% \vspace{0.5cm}
-%
-% \begin{block}{\'Etude de $G_{f_0}$}
-% $G_{f_0}$ est surjective, mais pas injective \vspace{0.3cm}\newline $\Rightarrow (\mathcal{X},G_{f_0})$ pas réversible.
-% \end{block}
-
-% }
-
+The topological space on which chaotic iterations are defined has
+firstly been investigated, leading to the following result~\cite{gb11:bc,GuyeuxThese10}:
+\begin{proposition}
+$\mathcal{X}$ is an infinitely countable metric space, being both
+compact, complete, and perfect (each point is an accumulation point).
+\end{proposition}
+These properties are required in some topological specific
+formalization of a chaotic dynamical system, justifying their
+proofs.