X-Git-Url: https://bilbo.iut-bm.univ-fcomte.fr/and/gitweb/review_prng.git/blobdiff_plain/2a4c35a90cbd9b41b4a730aafa519c8e28ea04ab..88947af28fe7e7f5b1dd35d21d71b2f69130b798:/review_prng.tex diff --git a/review_prng.tex b/review_prng.tex index d4acd30..0cdeb04 100644 --- a/review_prng.tex +++ b/review_prng.tex @@ -3,7 +3,7 @@ \usepackage[standard]{ntheorem} \usepackage[english]{babel} - +\usepackage{stmaryrd} \usepackage{amsmath} \usepackage{color} \usepackage{dsfont} @@ -27,9 +27,9 @@ \section{Introduction} -\section{Topology} +\section{Topologycal Study of Disorder} -\subsection{Historical context} +\subsection{Historical Context} Pseudorandom number generators are recurrent sequences having a disordered behavior. @@ -52,240 +52,216 @@ More precisely, his theorem states that, considering Eq.~\eqref{sdd} with a func $f:I \longrightarrow I$ continuous on the line segment $I$, the absence of any 2-cycle implies the convergence of the discrete dynamical system. - -% -% -% \begin{block}{Convergence} -% \begin{itemize} -% \item $f$ monotone -% \item Applications contractantes -% \item Coppel: Pas de 2-cycle $\Rightarrow$ convergence -% \end{itemize} -% \end{block} -%} - - - -%\frame{ -% \frametitle{3-cycle implique chaos} -% \begin{alertblock}{Period Three Implies Chaos (Li et Yorke, 1975)} -%S'il y a un point de période 3, alors il y a un point de n'importe quelle période -% \end{alertblock} -% -% \uncover<2->{ -% \begin{exampleblock}{Remarques} -% \begin{itemize} -% \item Désordre lié à la multiplicité des périodes -% \item \`A AND, on étudie des ``systèmes itératifs'' pour le calcul distribué, généralisation des suites récurrentes -% \end{itemize} -% \end{exampleblock} -% } -%} - - - - - -%%\subsection*{Réécriture des systèmes itératifs} - -%%\frame{ -%% \frametitle{Les systèmes itératifs: généralisation} -%% \begin{block}{Les systèmes itératifs en toute généralité} -%% La formulation suivante englobe tous les modes d'itérations imaginables: -%% $$\left\{ -%% \begin{array}{l} -%% x^0 \in \mathcal{X}\\ -%% x^{n+1} = f^n(x^0, \hdots, x^n) -%% \end{array} -%% \right.$$ -%% où $f^n:\mathcal{X}^{n+1}\rightarrow \mathcal{X}$ -%% \end{block} -%%\uncover<2->{ -%%Différents modes d'itérations: séries, parallèles, chaotiques, asynchrones... -%%} -%%} - - - - - - - - - - -%\subsection*{Cas des Itérations chaotiques} -%\frame{ -% \frametitle{Les « itérations chaotiques »} -% \begin{block}{Définition (Itérations chaotiques)} -% Soient $f: \mathds{B}^\mathsf{N} \longrightarrow \mathds{B}^\mathsf{N}$ et $S \subset \mathcal{P} \left(\llbracket1,\mathsf{N}\rrbracket\right)^\mathds{N}$. Les \emph{itérations chaotiques} sont: -%$$\left\{ -%\begin{array}{l} -%x^0 \in \mathds{B}^\mathsf{N} \\ -%\forall n \in \mathds{N}^*, \forall i \in \llbracket 1; \mathsf{N} \rrbracket, x^{n}_i = \left\{ -%\begin{array}{ll} -%x^{n-1}_{i} & \textrm{ si } i \notin S^n\\ -%f(x^{n-1})_{i} & \textrm{ si } i \in S^n -%\end{array} -%\right. -%\end{array} -%\right.$$ -%\end{block} -%%\uncover<2->{ -%%Itérations chaotiques et théorie du chaos: a priori, rien à voir. -%%} -%%\uncover<3->{Y a-t-il un lien ?}\uncover<4->{ Pour quoi faire ?} -%} - - - - - -%\frame{ -% \frametitle{Non-convergence des IC} -% \begin{alertblock}{Théorème (Condition nécessaire de non-convergence)} -% % Soit $f : \mathds{B}^\mathsf{N} \to \mathds{B}^\mathsf{N}$ et $S \in \mathcal{S}$. -% Si les itérations chaotiques $\left(f,(x^0,S)\right)$ sont non convergentes, alors: -%\begin{itemize} -%\item soit $f$ n'est pas contractante, -%\item soit $S$ n'est pas pseudo-périodique (complète). -%\end{itemize} -% \end{alertblock} -% \uncover<2->{ -% Quelle quantité de désordre ? -% } -%} - - - - - - - - - - -%\frame{ -%\frametitle{Présentation du problème} - -%\begin{tabular}{c||c} -%MATHS DISCRÈTES & TOPOLOGIE MATHÉMATIQUE \tabularnewline -%\hline -%\multirow{2}{5cm}{\centering $f: \mathds{B}^\mathsf{N} \to \mathds{B}^\mathsf{N}$} & $(\mathcal{X},\tau)$ espace topologique\\ -%& $f : \mathcal{X} \to \mathcal{X}$ continue pour $\tau$\\ -%\hline -%$S \in \mathcal{S} = \llbracket 1,\mathsf{N}\rrbracket^\mathds{N}$ & \multirow{2}{5cm}{\centering $x^0 \in \mathcal{X}$} \\ -%$x^0 \in \mathds{B}^\mathds{N}$ & \\ -%\hline -%$x_i^{n+1} = \left\{ \begin{array}{ll} x^{n}_{i} & \textrm{ si } i \neq S^n\\ f(x^{n})_{i} & \textrm{ si } i = S^n \end{array} \right.$ & $\forall n \in \mathds{N}, x^{n+1} = f(x^n)$ \\ -%\end{tabular} - -%} - - - - - - -%\frame{ -%\frametitle{Définitions et notations} -%\begin{block}{Introduisons quelques fonctions...} -%\begin{itemize} -%\item décalage: $\sigma : \mathcal{S} \longrightarrow \mathcal{S}, (S^n)_{n \in \mathds{N}} \mapsto (S^{n+1})_{n \in \mathds{N}}$. -%\item initiale: $i : \mathcal{S} \longrightarrow \llbracket 1 ; \mathsf{N} \rrbracket, (S^n)_{n \in \mathds{N}} \mapsto S^0$ -%\item $F_f : \llbracket 1 ; \mathsf{N} \rrbracket \times \mathds{B}^\mathsf{N} \longrightarrow \mathds{B}^\mathsf{N},$ $$(k,E) \longmapsto \left( E_j.\delta(k,j) + f(E)_k.\overline{\delta (k,j)} \right)_{j \in \llbracket 1 ; \mathsf{N} \rrbracket}$$ -%\end{itemize} -%où $\delta(x,y) = \left\{\begin{array}{ll} -%0 & \textrm{ si } x=y, \\ -%1 & \textrm{ sinon.} -% \end{array}\right. -%$ -%\end{block} -%} - - - - -%\frame{ -%\frametitle{Modélisation des IC} -%\begin{alertblock}{Modélisation des IC en topologie} -%Soit $\mathcal{X} = \llbracket 1 ; \mathsf{N} \rrbracket^\mathds{N} \times \mathds{B}^\mathsf{N},$ et $G_f\left(S,E\right) = \left(\sigma(S), F_f(i(S),E)\right).$ - - -%On modélise les itérations chaotiques $\left(f, (S,x^0)\right)$ par le système dynamique discret: -%$$\left\{ -%\begin{array}{l} -%X^0 = (S,x^0) \in \mathcal{X}, \\ -%\forall k \in \mathds{N}, X^{k+1} = G_f(X^k). -%\end{array} -%\right.$$ -%\end{alertblock} - -% \uncover<2>{ -% On peut donc étudier leur désordre topologique. -% } -%} - - - - - -%\frame{ -% \frametitle{Métrique et continuité} - -%Distance sur $\mathcal{X}:$ -%$$d((S,E);(\check{S};\check{E})) = d_e(E,\check{E}) + d_s(S,\check{S})$$ - -%\noindent où $\displaystyle{d_e(E,\check{E}) = \sum_{k=1}^\mathsf{N} \delta (E_k, \check{E}_k)}$, ~~et~ $\displaystyle{d_s(S,\check{S}) = \dfrac{9}{\textsf{N}} \sum_{k = 1}^\infty \dfrac{|S^k-\check{S}^k|}{10^k}}$. -%%\end{block} - -%\vspace{0.5cm} - -%\begin{alertblock}{Théorème} -%La fonction $G_f : (\mathcal{X},d) \to (\mathcal{X},d)$ est continue. -%\end{alertblock} - -%} - - - -% \frame{ -% \frametitle{\'Etude de $(\mathcal{X},d)$} -% \begin{block}{Propriétés de $(\mathcal{X},d)$} -% \begin{itemize} -% \item $\mathcal{X}$ est infini indénombrable -% \vspace{0.15cm} -% \item $(\mathcal{X},d)$ est un espace métrique compact, complet et parfait -% \end{itemize} -% \end{block} -% -% \vspace{0.5cm} -% -% \begin{block}{\'Etude de $G_{f_0}$} -% $G_{f_0}$ est surjective, mais pas injective \vspace{0.3cm}\newline $\Rightarrow (\mathcal{X},G_{f_0})$ pas réversible. -% \end{block} - -% } - - - -%%\frame{ -%% \frametitle{Etude des périodes} -%% \begin{block}{Multiplicité des périodes ?} -%% Soit $f_0:\mathds{B}^\mathsf{N} \rightarrow \mathds{B}^\mathsf{N}$ la négation vectorielle. -%% \begin{itemize} -%% \item $\forall k \in \mathds{N}, Per_{2k+1}(G_{f_0}) = \varnothing, card\left(Per_{2k+2}(G_{f_0})\right)>0$ \vspace{0.3cm} \linebreak $\Rightarrow G_{f_0}$ pas chaotique sur $\mathcal{X}$ -%% \item Cependant : -%% \begin{itemize} -%% \item Il y a chaos sur $\mathcal{X}^G = \mathcal{P}\left(\llbracket 1,\mathsf{N}\rrbracket\right)^\mathds{N}\times \mathds{B}^\mathsf{N}$. -%% \item $G_{f_0}$ possède plus de $n^2$ points périodiques de période $2n$. -%% \end{itemize} -%% \end{itemize} -%% \end{block} -%% \uncover<2->{ -%% Cette multiplicité des périodes n'est pas le désordre complet... -%% } -%%} +This theorem establish a clear link between the existence of a cycle of +a given length and the convergence of the system. In other words, between +cycles and order. Conversely, Li and Yorke have established in 1975~\cite{Li75} that +the presence of a point of period three implies chaos in the same situation +than previously. By chaos, they mean the existence of points of any +period: this kind of disorder, which is the first occurrence of the +term ``chaos'' in the mathematical litterature, is thus related to the +multiplicity of periods. Since that time, the mathematical theory of +chaos has known several developments to qualify or quantify the richness +of chaos presented by a given discrete dynamical system, one of the most +famous work, although old, being the one of Devaney~\cite{devaney}. + +\subsection{Iterative Systems} + +In the distributed computing community, dynamical systems have been +generatized to take into account delay transmission or heterogeneous +computational powers. Mathematically, the intended result is often one +fixed point resulting from the iterations of a given function over a +Boolean vector, considering that: +\begin{itemize} +\item at time $t$, $x^{t}$ is computed using not only $x^{t-1}$, but +potentially any $x^{k}, k0$. +\end{proposition} + +So $\Rightarrow G_{f_0}$ does not present the existence of points of any period referred as chaos in the article of Li and Yorke~\cite{Li75}. +However~\cite{GuyeuxThese10}: + \begin{itemize} + \item This kind of disorder can be stated on $\mathcal{X}^G = \mathcal{P}\left(\llbracket 1,\mathsf{N}\rrbracket\right)^\mathds{N}\times \mathds{B}^\mathsf{N}$. + \item $G_{f_0}$ possesses more than $n^2$ points of period $2n$. + \end{itemize} +Additionally, this existence of points of any period has been rejected +by the community to the benefit of more recent notions of chaos, as +they are detailed in the following paragraphs.