X-Git-Url: https://bilbo.iut-bm.univ-fcomte.fr/and/gitweb/review_prng.git/blobdiff_plain/2a4c35a90cbd9b41b4a730aafa519c8e28ea04ab..aa282765b88f449ee03206e4995360fcced37f56:/review_prng.tex?ds=sidebyside diff --git a/review_prng.tex b/review_prng.tex index d4acd30..158f90b 100644 --- a/review_prng.tex +++ b/review_prng.tex @@ -3,7 +3,7 @@ \usepackage[standard]{ntheorem} \usepackage[english]{babel} - +\usepackage{stmaryrd} \usepackage{amsmath} \usepackage{color} \usepackage{dsfont} @@ -27,9 +27,9 @@ \section{Introduction} -\section{Topology} +\section{Topologycal Study of Disorder} -\subsection{Historical context} +\subsection{Historical Context} Pseudorandom number generators are recurrent sequences having a disordered behavior. @@ -52,113 +52,102 @@ More precisely, his theorem states that, considering Eq.~\eqref{sdd} with a func $f:I \longrightarrow I$ continuous on the line segment $I$, the absence of any 2-cycle implies the convergence of the discrete dynamical system. - -% -% -% \begin{block}{Convergence} -% \begin{itemize} -% \item $f$ monotone -% \item Applications contractantes -% \item Coppel: Pas de 2-cycle $\Rightarrow$ convergence -% \end{itemize} -% \end{block} -%} - - - -%\frame{ -% \frametitle{3-cycle implique chaos} -% \begin{alertblock}{Period Three Implies Chaos (Li et Yorke, 1975)} -%S'il y a un point de période 3, alors il y a un point de n'importe quelle période -% \end{alertblock} -% -% \uncover<2->{ -% \begin{exampleblock}{Remarques} -% \begin{itemize} -% \item Désordre lié à la multiplicité des périodes -% \item \`A AND, on étudie des ``systèmes itératifs'' pour le calcul distribué, généralisation des suites récurrentes -% \end{itemize} -% \end{exampleblock} -% } -%} - - - - - -%%\subsection*{Réécriture des systèmes itératifs} - -%%\frame{ -%% \frametitle{Les systèmes itératifs: généralisation} -%% \begin{block}{Les systèmes itératifs en toute généralité} -%% La formulation suivante englobe tous les modes d'itérations imaginables: -%% $$\left\{ -%% \begin{array}{l} -%% x^0 \in \mathcal{X}\\ -%% x^{n+1} = f^n(x^0, \hdots, x^n) -%% \end{array} -%% \right.$$ -%% où $f^n:\mathcal{X}^{n+1}\rightarrow \mathcal{X}$ -%% \end{block} -%%\uncover<2->{ -%%Différents modes d'itérations: séries, parallèles, chaotiques, asynchrones... -%%} -%%} - - - - - - - - - - -%\subsection*{Cas des Itérations chaotiques} -%\frame{ -% \frametitle{Les « itérations chaotiques »} -% \begin{block}{Définition (Itérations chaotiques)} -% Soient $f: \mathds{B}^\mathsf{N} \longrightarrow \mathds{B}^\mathsf{N}$ et $S \subset \mathcal{P} \left(\llbracket1,\mathsf{N}\rrbracket\right)^\mathds{N}$. Les \emph{itérations chaotiques} sont: -%$$\left\{ -%\begin{array}{l} -%x^0 \in \mathds{B}^\mathsf{N} \\ -%\forall n \in \mathds{N}^*, \forall i \in \llbracket 1; \mathsf{N} \rrbracket, x^{n}_i = \left\{ -%\begin{array}{ll} -%x^{n-1}_{i} & \textrm{ si } i \notin S^n\\ -%f(x^{n-1})_{i} & \textrm{ si } i \in S^n -%\end{array} -%\right. -%\end{array} -%\right.$$ -%\end{block} -%%\uncover<2->{ -%%Itérations chaotiques et théorie du chaos: a priori, rien à voir. -%%} -%%\uncover<3->{Y a-t-il un lien ?}\uncover<4->{ Pour quoi faire ?} -%} - - - - - -%\frame{ -% \frametitle{Non-convergence des IC} -% \begin{alertblock}{Théorème (Condition nécessaire de non-convergence)} -% % Soit $f : \mathds{B}^\mathsf{N} \to \mathds{B}^\mathsf{N}$ et $S \in \mathcal{S}$. -% Si les itérations chaotiques $\left(f,(x^0,S)\right)$ sont non convergentes, alors: -%\begin{itemize} -%\item soit $f$ n'est pas contractante, -%\item soit $S$ n'est pas pseudo-périodique (complète). -%\end{itemize} -% \end{alertblock} -% \uncover<2->{ -% Quelle quantité de désordre ? -% } -%} - - - - +This theorem establish a clear link between the existence of a cycle of +a given length and the convergence of the system. In other words, between +cycles and order. Conversely, Li and Yorke have established in 1975~\cite{Li75} that +the presence of a point of period three implies chaos in the same situation +than previously. By chaos, they mean the existence of points of any +period: this kind of disorder, which is the first occurrence of the +term ``chaos'' in the mathematical litterature, is thus related to the +multiplicity of periods. Since that time, the mathematical theory of +chaos has known several developments to qualify or quantify the richness +of chaos presented by a given discrete dynamical system, one of the most +famous work, although old, being the one of Devaney~\cite{devaney}. + +\subsection{Iterative Systems} + +In the distributed computing community, dynamical systems have been +generatized to take into account delay transmission or heterogeneous +computational powers. Mathematically, the intended result is often one +fixed point resulting from the iterations of a given function over a +Boolean vector, considering that: +\begin{itemize} +\item at time $t$, $x^{t}$ is computed using not only $x^{t-1}$, but +potentially any $x^{k}, k