From: guyeux Date: Fri, 1 Jun 2012 10:16:29 +0000 (+0200) Subject: fdskl X-Git-Url: https://bilbo.iut-bm.univ-fcomte.fr/and/gitweb/review_prng.git/commitdiff_plain/aa282765b88f449ee03206e4995360fcced37f56?ds=sidebyside;hp=bba3979e3f3ee00ce44b16d13b4e61e434310b61 fdskl --- diff --git a/review_prng.tex b/review_prng.tex index a5d1388..158f90b 100644 --- a/review_prng.tex +++ b/review_prng.tex @@ -3,7 +3,7 @@ \usepackage[standard]{ntheorem} \usepackage[english]{babel} - +\usepackage{stmaryrd} \usepackage{amsmath} \usepackage{color} \usepackage{dsfont} @@ -93,70 +93,61 @@ $$\left\{ where $f^n:\mathcal{X}^{n+1}\rightarrow \mathcal{X}$. \end{definition} +Some particular cases of these iterative systems are well documented, +namely the serial, parallel, or chaotic modes. +In the serial mode, each component is updated one by one, whereas the +parallel mode consists in updating all the components at each iteration, +leading to an usual discrete dynamical system. +These modes are compiliant with the definition above, +On appelle \emph{itérations parallèles} \index{itérations!parallèles} de $f$ sur +$\mathcal{X}$ toute itération synchrone $\Sigma = (\mathcal{X}, \mathcal{F})$ +telle que la suite $\mathcal{F}$ est constante égale à $f: \X \to \X$. +On parle encore d'itérations parallèles $\left(\mathcal{X},f\right)$. -%% \end{block} -%%\uncover<2->{ -%%Différents modes d'itérations: séries, parallèles, chaotiques, asynchrones... -%%} -%%} - - - - - - - - - - -%\subsection*{Cas des Itérations chaotiques} -%\frame{ -% \frametitle{Les « itérations chaotiques »} -% \begin{block}{Définition (Itérations chaotiques)} -% Soient $f: \mathds{B}^\mathsf{N} \longrightarrow \mathds{B}^\mathsf{N}$ et $S \subset \mathcal{P} \left(\llbracket1,\mathsf{N}\rrbracket\right)^\mathds{N}$. Les \emph{itérations chaotiques} sont: -%$$\left\{ -%\begin{array}{l} -%x^0 \in \mathds{B}^\mathsf{N} \\ -%\forall n \in \mathds{N}^*, \forall i \in \llbracket 1; \mathsf{N} \rrbracket, x^{n}_i = \left\{ -%\begin{array}{ll} -%x^{n-1}_{i} & \textrm{ si } i \notin S^n\\ -%f(x^{n-1})_{i} & \textrm{ si } i \in S^n -%\end{array} -%\right. -%\end{array} -%\right.$$ -%\end{block} -%%\uncover<2->{ -%%Itérations chaotiques et théorie du chaos: a priori, rien à voir. -%%} -%%\uncover<3->{Y a-t-il un lien ?}\uncover<4->{ Pour quoi faire ?} -%} - - - - - -%\frame{ -% \frametitle{Non-convergence des IC} -% \begin{alertblock}{Théorème (Condition nécessaire de non-convergence)} -% % Soit $f : \mathds{B}^\mathsf{N} \to \mathds{B}^\mathsf{N}$ et $S \in \mathcal{S}$. -% Si les itérations chaotiques $\left(f,(x^0,S)\right)$ sont non convergentes, alors: -%\begin{itemize} -%\item soit $f$ n'est pas contractante, -%\item soit $S$ n'est pas pseudo-périodique (complète). -%\end{itemize} -% \end{alertblock} -% \uncover<2->{ -% Quelle quantité de désordre ? -% } -%} - - +Finally, iterative systems in chaotic mode, simply called chaotic iterations, + are defined as follows. + +\begin{definition} +Let $f: \mathds{B}^\mathsf{N} \longrightarrow \mathds{B}^\mathsf{N}$ and +$S \subset \mathcal{P} \left(\llbracket1,\mathsf{N}\rrbracket\right)^\mathds{N}$. +\emph{Chaotic iterations} are defined by: +$$\left\{ +\begin{array}{l} +x^0 \in \mathds{B}^\mathsf{N} \\ +\forall n \in \mathds{N}^*, \forall i \in \llbracket 1; \mathsf{N} \rrbracket, x^{n}_i = \left\{ +\begin{array}{ll} +x^{n-1}_{i} & \textrm{ if } i \notin S^n\\ +f(x^{n-1})_{i} & \textrm{ if } i \in S^n +\end{array} +\right. +\end{array} +\right.$$ +\end{definition} +\emph{A priori}, there is no relation between these chaotic iterations +and the mathematical theory of chaos recalled in the previous section. +On our side, we have regarded whether these chaotic iterations can +behave chaotically, as it is defined for instance by Devaney, and if so, +in which applicative context this behavior can be profitable. +This questionning has led to a first necessary condition of non convergence. + +\begin{proposition} +Let $f : \mathds{B}^\mathsf{N} \to \mathds{B}^\mathsf{N}$ and +$S \in \llbracket 1, \mathsf{N} \rrbracket^{\mathds{N}}$. +If the chaotic iterations $\left(f,(x^0,S)\right)$ are not convergent, then: +\begin{itemize} +\item either $f$ is not a contraction, +\item or $S$ is not pseudo-periodic. +\end{itemize} +\end{proposition} + +The quantity of disorder generated by such chaotic iterations, when satisfying +the proposition above, has then been measured. To do so, chaotic iterations +have first been rewriten as simple discrete dynamical systems, as follows.