From: guyeux Date: Fri, 1 Jun 2012 11:51:13 +0000 (+0200) Subject: dezq X-Git-Url: https://bilbo.iut-bm.univ-fcomte.fr/and/gitweb/review_prng.git/commitdiff_plain/c55c7184a8501fd1c822a5cc6aebfd5f06399484?ds=inline dezq --- diff --git a/review_prng.tex b/review_prng.tex index 0cdeb04..b395874 100644 --- a/review_prng.tex +++ b/review_prng.tex @@ -260,57 +260,45 @@ However~\cite{GuyeuxThese10}: \item $G_{f_0}$ possesses more than $n^2$ points of period $2n$. \end{itemize} Additionally, this existence of points of any period has been rejected -by the community to the benefit of more recent notions of chaos, as -they are detailed in the following paragraphs. +by the community to the benefit of more recent notions of chaos, +like those developed these last decades by Devaney~\cite{Devaney}, Knudsen~\cite{Knudsen94}, etc. + +In these approaches, three ingredients are required for unpredictability. +Firstly, the system must be intrinsically complicated, undecomposable: it cannot be simplified into two +subsystems that do not interact, making any divide and conquer strategy +applied to the system inefficient. In particular, a lot of orbits must visit +the whole space. Secondly, an element of regularity is added, to counteract +the effects of the first ingredient, leading to the fact that closed points +can behave in a completely different manner, and this behavior cannot be predicted. +Finally, sensibility of the system is demanded as a third ingredient, making that +closed points can finally become distant during iterations of the system. +This last requirement is, indeed, often implied by the two first ingredients. + +Having this understanding of an unpredictable dynamical system, Devaney has +formalized in~\cite{Devaney} the following definition of chaos. +\begin{definition} +A discrete dynamical system $x^0 \in \mathcal{X}, x^{n+1}=f(x^n)$ on a +metric space $(\mathcal{X},d)$ is said to be chaotic according to Devaney +if it satisfies the three following properties: + \begin{enumerate} +\item \emph{Transitivity:} For each couple of open sets $A,B \subset \mathcal{X}$, there exists $k \in \mathbb{N}$ such that $f^{(k)}(A)\cap B \neq \varnothing$. +\item \emph{Regularity:} Periodic points are dense in $\mathcal{X}$. +\item \emph{Sensibility to the initial conditions:} There exists $\varepsilon>0$ such that $$\forall x \in \mathcal{X}, \forall \delta >0, \exists y \in \mathcal{X}, \exists n \in \mathbb{N}, d(x,y)<\delta \textrm{ and } d(f^{(n)}(x),f^{(n)}(y)) \geqslant \varepsilon.$$ +\end{enumerate} +\end{definition} - -%\subsection*{Approche type Devaney/Knudsen} - -%\frame{ -% \frametitle{Les approches Devaney et Knudsen} -% \begin{block}{3 propriétés pour de l'imprévisibilité} -% \begin{enumerate} -% \item \emph{Indécomposabilité.} On ne doit pas pouvoir simplifier le système -% \begin{itemize} -% \item Impossible de diviser pour régner -% \item Des orbites doivent visiter tout l'espace -% \end{itemize} -% \item \emph{Élément de régularité.} -% \begin{itemize} -% \item Contrecarre l'effet précédent -% \item Des points proches \textit{peuvent} se comporter complètement différemment -% \end{itemize} -% \item \emph{Sensibilité.} Des points proches \textit{peuvent} finir éloignés -% \end{enumerate} -% \end{block} -%} - - -%\frame{ -% \frametitle{Exemple : définition de Devaney} -%\begin{enumerate} -%\item \emph{Transitivité:} Pour chaque couple d'ouverts non vides $A,B \subset \mathcal{X}$, il existe $k \in \mathbb{N}$ tel que $f^{(k)}(A)\cap B \neq \varnothing$ -%\item \emph{Régularité:} Les points périodiques sont denses -%\item \emph{Sensibilité aux conditions initiales:} Il existe $\varepsilon>0$ tel que $$\forall x \in \mathcal{X}, \forall \delta >0, \exists y \in \mathcal{X}, \exists n \in \mathbb{N}, d(x,y)<\delta \textrm{ et } d(f^{(n)}(x),f^{(n)}(y)) \geqslant \varepsilon$$ -%\end{enumerate} -%} - -%\frame{ -% \frametitle{Systèmes intrinsèquement compliqués} -% \begin{block}{Définitions de l'indécomposabilité} -% \begin{itemize} -% \item \emph{Indécomposable}: pas la réunion de deux parties non vides, fermées et t.q. $f(A) \subset A$ -% \item \emph{Totalement transitive}: $\forall n \geqslant 1$, l'application composée $f^{(n)}$ est transitive. -% \item \emph{Fortement transitif}: -%$\forall x,y \in \mathcal{X},$ $\forall r>0,$ $\exists z \in B(x,r),$ $\exists n \in \mathbb{N},$ $f^{(n)}(z)=y.$ -% \item \emph{Topologiquement mélangeant}: pour toute paire d'ouverts disjoints et non vides $U$ et $V$, il existe $n_0 \in \mathbb{N}$ tel que $\forall n \geqslant n_0, f^{(n)}(U) \cap V \neq \varnothing$. -% \end{itemize} -% \end{block} -%} - +The system can be intrinsically complicated for various other understanding of this wish, that are +not equivalent one another, like: +\begin{itemize} + \item \emph{Undecomposable}: it is not the union of two nonempty closed subsets that are positively invariant ($f(A) \subset A$). + \item \emph{Total transitivity}: $\forall n \geqslant 1$, the function composition $f^{(n)}$ is transitive. + \item \emph{Strong transitivity}: $\forall x,y \in \mathcal{X},$ $\forall r>0,$ $\exists z \in B(x,r),$ $\exists n \in \mathbb{N},$ $f^{(n)}(z)=y.$ + \item \emph{Topological mixing}: for all pairs of disjoint open nonempty sets $U$ and $V$, there exists $n_0 \in \mathbb{N}$ such that $\forall n \geqslant n_0, f^{(n)}(U) \cap V \neq \varnothing$. +\end{itemize} +Concerning the ingredient of sensibility, it can be formulated as follows. %\frame{ %\frametitle{Stabilité et expansivité}