From bba3979e3f3ee00ce44b16d13b4e61e434310b61 Mon Sep 17 00:00:00 2001 From: guyeux Date: Thu, 31 May 2012 13:59:51 +0200 Subject: [PATCH] Avan --- review_prng.tex | 86 ++++++++++++++++++++++++------------------------- 1 file changed, 42 insertions(+), 44 deletions(-) diff --git a/review_prng.tex b/review_prng.tex index d4acd30..a5d1388 100644 --- a/review_prng.tex +++ b/review_prng.tex @@ -27,9 +27,9 @@ \section{Introduction} -\section{Topology} +\section{Topologycal Study of Disorder} -\subsection{Historical context} +\subsection{Historical Context} Pseudorandom number generators are recurrent sequences having a disordered behavior. @@ -52,53 +52,51 @@ More precisely, his theorem states that, considering Eq.~\eqref{sdd} with a func $f:I \longrightarrow I$ continuous on the line segment $I$, the absence of any 2-cycle implies the convergence of the discrete dynamical system. +This theorem establish a clear link between the existence of a cycle of +a given length and the convergence of the system. In other words, between +cycles and order. Conversely, Li and Yorke have established in 1975~\cite{Li75} that +the presence of a point of period three implies chaos in the same situation +than previously. By chaos, they mean the existence of points of any +period: this kind of disorder, which is the first occurrence of the +term ``chaos'' in the mathematical litterature, is thus related to the +multiplicity of periods. Since that time, the mathematical theory of +chaos has known several developments to qualify or quantify the richness +of chaos presented by a given discrete dynamical system, one of the most +famous work, although old, being the one of Devaney~\cite{devaney}. + +\subsection{Iterative Systems} + +In the distributed computing community, dynamical systems have been +generatized to take into account delay transmission or heterogeneous +computational powers. Mathematically, the intended result is often one +fixed point resulting from the iterations of a given function over a +Boolean vector, considering that: +\begin{itemize} +\item at time $t$, $x^{t}$ is computed using not only $x^{t-1}$, but +potentially any $x^{k}, k{ -% \begin{exampleblock}{Remarques} -% \begin{itemize} -% \item Désordre lié à la multiplicité des périodes -% \item \`A AND, on étudie des ``systèmes itératifs'' pour le calcul distribué, généralisation des suites récurrentes -% \end{itemize} -% \end{exampleblock} -% } -%} - - - - -%%\subsection*{Réécriture des systèmes itératifs} - -%%\frame{ -%% \frametitle{Les systèmes itératifs: généralisation} -%% \begin{block}{Les systèmes itératifs en toute généralité} -%% La formulation suivante englobe tous les modes d'itérations imaginables: -%% $$\left\{ -%% \begin{array}{l} -%% x^0 \in \mathcal{X}\\ -%% x^{n+1} = f^n(x^0, \hdots, x^n) -%% \end{array} -%% \right.$$ -%% où $f^n:\mathcal{X}^{n+1}\rightarrow \mathcal{X}$ %% \end{block} %%\uncover<2->{ %%Différents modes d'itérations: séries, parallèles, chaotiques, asynchrones... -- 2.39.5