\newcommand{\Nats}[0]{\ensuremath{\mathbb{N}}} \begin{Theorem}{} Given an initial configuration $X^0 = (X_1^0, \ldots, X_n^0)$ and a strategy $(J^t)^{t \in \Nats}$. If chaotic iterations with strategy $(J^t)^{t \in \Nats}$ converge to some fixed-point, then mixed iterations with uniform delays with the same strategy $(J^t)^{t \in \Nats}$ converge to the same fixed-point. \end{Theorem} \begin{Proof} \begin{itemize} \item Element renaming wrt. a partial order \item Induction on the SCC index \end{itemize} \end{Proof}