X-Git-Url: https://bilbo.iut-bm.univ-fcomte.fr/and/gitweb/slides_and.git/blobdiff_plain/a462b53d610b423cbe1357e9b35268c0458be0e5..HEAD:/devaney.tex?ds=sidebyside diff --git a/devaney.tex b/devaney.tex index 2a7934e..ac73682 100644 --- a/devaney.tex +++ b/devaney.tex @@ -1,24 +1,20 @@ -\begin{block}{Definition: Chaotic function [4]$^4$} -Let $(\mathcal{X}; d)$ be a metric space. -A function $f: \mathcal{X} \rightarrow \mathcal{X}$ is chaotic on $\mathcal{X}$ if: +\begin{block}{Définition d'une fonction chaotique selon Devaney} +Soit $(\mathcal{X}; d)$ un espace métrique. +Une fonction $f: \mathcal{X} \rightarrow \mathcal{X}$ est chaotique sur $\mathcal{X}$ si: \begin{enumerate} -\item $f$: topologically transitive (\textit{i.e.}, indecomposability of the system)\\ -(for any pair of open sets $U,V \subset \mathcal{X}$, $\exists k > 0 . +\item $f$: topologiquement transitive (\textit{i.e.}, système indécomposable)\\ +(pour chaque paire d'ensembles ouverts $U,V \subset \mathcal{X}$, $\exists k > 0 . f^k (U) \cap V \neq \emptyset$) \\ -\onslide<2>{\alert<2>{Addressed property: preimage resistance}}. -\item $f$ is regular (\textit{i.e.}, fundamentally different points coexist)\\ -(the set of periodic points is dense in $\mathcal{X}$). -\item $f$: sensitive dependent on initial conditions (SDIC)\\ +\item $f$ est régulière (l'ensemble des points périodiques est dense dans $\mathcal{X}$). +\item $f$: sensible aux conditions initiales \\ ($ \exists \delta > 0 . \forall x \in \mathcal{X} \textrm{ and } -\forall V \textrm{ neighborhood of $x$}. -\exists y \in V \textrm{ and } +\forall V \textrm{ voisin de $x$}. +\exists y \in V \textrm{ et } \exists n \ge 0 . d(f^n(x); f^n(y))> \delta $)\\ -\onslide<2>{\alert<2>{Addressed properties: avalanche effect}}. \end{enumerate} \end{block} -\footnote{\bibentry{devaney}} \ No newline at end of file