From: couchot Date: Tue, 6 Mar 2012 20:57:38 +0000 (+0100) Subject: ajout de la partie chaos X-Git-Url: https://bilbo.iut-bm.univ-fcomte.fr/and/gitweb/slides_and.git/commitdiff_plain/a462b53d610b423cbe1357e9b35268c0458be0e5 ajout de la partie chaos --- diff --git a/cbhfk.tex b/cbhfk.tex new file mode 100644 index 0000000..fc5a238 --- /dev/null +++ b/cbhfk.tex @@ -0,0 +1,7 @@ +\vspace{-1em} +\begin{itemize} +\item \cite{Wang2003}\footnote{\bibentry{Wang2003}}, \cite{Xiao20094346}\footnote{\bibentry{Xiao20094346}},\cite{Xiao20092288}\footnote{\bibentry{Xiao20092288}},\cite{Xiao20102254}\footnote{\bibentry{Xiao20102254}}. +\item Logistic, tent, or Arnold's cat maps: included chaotic functions of +\alert<2>{real variables}. +\item Claim: chaos properties \alert<2>{preserved} in the final hash function. +\end{itemize} diff --git a/ci.tex b/ci.tex new file mode 100644 index 0000000..bf46756 --- /dev/null +++ b/ci.tex @@ -0,0 +1,32 @@ +\vspace{-1.5em}\begin{itemize} +\item Discrete Iterative System: +\begin{itemize} +\item $x=(x_1,\dots,x_n)$ : $n$ components, $x_i$ in $\Bool=\{0,1\}$. +\item A \emph{strategy} \alert<2>{$(S^{t})^{t \in \Nats}$}: sequence of the + components that may be updated at time $t$. +\item Components evolution: defined for times $t=0,1,2,\ldots$ +by: +$$ +\left\{ + \begin{array}{l} + \alert<2>{x^{0}}\in \Bool^{n} \textrm{ and}\\ + x^{t+1}= (x^{t+1}_1,\dots,x^{t+1}_n) \textrm{ where } + x^{t+1}_i = + \left\{ + \begin{array}{l} + \overline{x^{t}_i} \textrm{ if $i = S^t$} \\ + x^t_i \textrm{ otherwise} + \end{array} + \right. + \end{array} +\right. +$$ +\end{itemize} +\item Theoretical Results~\cite{GuyeuxThese10}\footnote{\bibentry{GuyeuxThese10}}: let $\mathcal{X}$ be +$ \llbracket 1 ; n \rrbracket^{\Nats} \times +\Bool^n$. We can define a distance $d$ on $\mathcal{X}$ and +a function $f: \mathcal{X} \rightarrow \mathcal{X}$ from the +iterative process +s.t. $f$ is a continuous and chaotic function. +\end{itemize} + diff --git a/devaney.tex b/devaney.tex new file mode 100644 index 0000000..2a7934e --- /dev/null +++ b/devaney.tex @@ -0,0 +1,24 @@ +\begin{block}{Definition: Chaotic function [4]$^4$} +Let $(\mathcal{X}; d)$ be a metric space. +A function $f: \mathcal{X} \rightarrow \mathcal{X}$ is chaotic on $\mathcal{X}$ if: +\begin{enumerate} +\item $f$: topologically transitive (\textit{i.e.}, indecomposability of the system)\\ +(for any pair of open sets $U,V \subset \mathcal{X}$, $\exists k > 0 . +f^k (U) \cap V \neq \emptyset$) +\\ +\onslide<2>{\alert<2>{Addressed property: preimage resistance}}. +\item $f$ is regular (\textit{i.e.}, fundamentally different points coexist)\\ +(the set of periodic points is dense in $\mathcal{X}$). +\item $f$: sensitive dependent on initial conditions (SDIC)\\ +($ +\exists \delta > 0 . \forall x \in \mathcal{X} +\textrm{ and } +\forall V \textrm{ neighborhood of $x$}. +\exists y \in V \textrm{ and } +\exists n \ge 0 . +d(f^n(x); f^n(y))> \delta +$)\\ +\onslide<2>{\alert<2>{Addressed properties: avalanche effect}}. +\end{enumerate} +\end{block} +\footnote{\bibentry{devaney}} \ No newline at end of file diff --git a/secu.tex b/secu.tex new file mode 100644 index 0000000..0519ecb --- /dev/null +++ b/secu.tex @@ -0,0 +1 @@ + \ No newline at end of file