
1

Fast GPU-based denoising filter using isoline levels
Gilles Perrot1, Stéphane Domas1, Raphaël Couturier1, Nicolas Bertaux2

1FEMTO-ST institute
Rue Engel Gros, 90000 Belfort, France.

forename.name@univ-fcomte.fr
2 Institut Fresnel, CNRS, Aix-Marseille Université, Ecole Centrale Marseille,

Campus de Saint-Jérôme, 13013 Marseille, France.
nicolas.bertaux@ec-marseille.fr

Abstract

In this study, we propose to address the issue of image denoising by means of a GPU-based filter, able to
achieve high-speed processing by taking advantage of the parallel computation capabilities of modern GPUs. Our
approach is based on the level sets theory first introduced by [1] in 1975 but little implemented because of its high
computation costs. What we actually do is try to guess the best isoline shapes inside the noisy image. At first, our
method involved the polyline modelling of isolines; then we found an optimization heuristics which very closely
fits the capabilities of GPUs. So far, though our proposed PI-PD filter has not achieved the best denoising levels,
it is nonetheless able to process a 512x512 image in about 4 ms.

Keywords

GPU; denoising; filter; isoline;level line;

I. INTRODUCTION

Denoising has been a much studied research issue since electronic transmission was first used. The
wide range of applications that involve denoising makes it uneasy to propose a universal filtering method.
Among them, digital image processing is a major field of interest as the number of digital devices able to
take pictures or make movies is growing fast and shooting is rarely done in optimal conditions. Moreover,
the increase in pixel density of the CCD or CMOS sensors used to measure light intensity leads to higher
noise effects and imposes high output flow rates to the various processing algorithms.

In addition, it is difficult to quantify the quality of an image processing algorithm, as visual perception
is subject to high variation from one human to another. So far, the advent of GPUs has brought high
speedups to a lot of algorithms, and many researchers and developpers have successfully adressed the
issue of implementing existing algorithms on such devices. For example in [2], authors managed to design
a fast median filter. However, most of the high quality algorithms, like NL-means [3] or BM3D [4] make
use of non-local similarities and/or frequency domain transforms. However, these methods, even if they
could be implemented efficiently on GPUs as the authors did with NL-means in [5], are actually much
more time consuming than local methods such as gaussian, median or neighborhood filters. Moreover,
in order to fully benefit from the capabilities of GPUs, it is important that the approach to designing
algorithms be more hardware-oriented, keeping in mind, from the very beginning, the intrinsic constraints
of the device which is actually going to run those algorithms. This often results in slightly different options
and even sub-optimal solutions, but the considerable speed benefits obtained would possibly make it a
good compromise.

II. CONTRIBUTION

As early as 1975 [1], it was found that, under the conditions mentioned in section V, an image can
be decomposed into a set of level lines. Accordingly, real-life images fulfill the above conditions and

2

since then, with the increase of computing capabilities, researchers have succeded in implementing such
level-lines based algorithms as in [6] and [7]. A few years ago, in [8], authors proposed an original
method which significantly reduces speckle noise inside coherent images, using the level lines in the
image to constrain the minimization process. Those level lines are actually iso-gray-level lines, which
are called isolines. In [8], isolines consist in neighborhoods of polyline shapes determined by maximum
likelihood optimization. This method proved not only to bring good enhancement but also to preserve
edges between regions. Nevertheless, the costs in computation time, though not prohibitive, did not allow
real-time image processing; as an example, the authors of [8] managed to process an almost 2Mpixel
image within a minute on an old PIII-1GHz.

Our work started by designing a set of GPU implementations with various optimization heuristics,
in order to find out which tracks could be followed towards minimizing loss in quality and preserve
admissible execution times. Those algorithms have been tested with reference images taken from [9] for
which various processing results have been published. Some of the more interesting ones are listed and
compared in [10]. Statistical observations (to be detailed below) made on the output images produced by
the method proposed in [8], led us to propose a very fast and simple parallel denoising method which
gives good results in terms of average gray-level error, but also avoids the blurring of edges.

As exposed later in the result section, our proposed GPU-based filter does not achieve such high
denoising levels as, for example, the BM3D algorithm described in [4], but on the basis of the timings
listed in [4] and on our own measurements, it runs hundreds of times faster and thus is able to process
high definition images at over 25fps.

III. PLAN

In the following, section IV briefly focuses on recent Nvidia GPU characteristics. Section V will
introduce the theory and notations used to define isolines. Then, in section VI, we will describe the two
isoline based models that led to the final hybrid model, while section VII details the parallel implementation
of the proposed algorithm. Finally, we present our results in section VIII before drawing our conclusions
and outlining our future works in section IX.

IV. NVIDIA’S GPU ARCHITECTURE

GPUs are multi-core, multi-threaded processors, optimized for highly parallel computation. Their design
focuses on a SIMT model (Single Instruction Multiple Threads) that devotes more transistors to data
processing rather than data-caching and flow control (see [11] for more details). For example, a C2070 card
features 6 GBytes global memory and a total of 448 cores bundled in several Streaming Multiprocessors
(SM). An amount of shared memory, much faster than global memory, is avalaible on each SM (up to
48 KB for a C20xx card)

Writing efficient code for such architectures is not obvious, as re-serialization must be avoided as much
as possible. Thus, code design requires one pays attention to a number of points, among which:
• the CUDA model organizes threads by a) thread blocks in which synchronization is possible, b) a

grid of blocks with no possible synchronization between them.
• there is no way to know how blocks are scheduled during one single kernel execution.
• data must be kept in GPU memory, to reduce the overhead generated by copying between CPU and

GPU.
• the total amount of threads running the same computation must be as large as possible.
• the number of execution branches inside one block should be as small as possible.
• global memory accesses should be coalescent, i.e. memory accesses done by physically parallel

threads (2 x 16 at a time) must be consecutive and contained in a 128 Bytes range.
• shared memory is organized in 32x32 bit-wide banks. To avoid bank conflicts, each parallel thread

(2 x 16 at a time) must access a different bank.
All the above characteristics always make designing efficient GPU code all the more constraining as

non-suited code would probably run even slower on GPU than on CPU.

3

V. ISOLINES

In the following, let I be the reference noiseless image (assuming we have one), I ′ the noisy acquired
image corrupted by Independent and Identically Distributed (IID) additive white gaussian noise of zero
mean value and standard deviation σ. Let Î be the rebuilt image. Each pixel of I ′ of coordinates (i, j)
has its own gray level z(i, j).

As introduced above and since most common images are continuous and contain few edges, they can
be decomposed into a set of constant gray level lines called isolines. Then our goal is to find, for each
single pixel of a noisy image, the isoline it belongs to. The generalized likelihood criterion (GL) is used
to select the best isoline among all the considered ones, all of which must have the same number of pixels
in order to be compared.

A. Fixed-length isolines
For each pixel (i, j) of the corrupted image, we look for the gray level of the isoline it belongs to,

inside a rectangular window ω centered on (i, j). Inside ω, let Sn be the isoline part which the center
pixel belongs to. Sn is a set of n pixel positions (iq, jq) (q ∈ [0;n[).
The gray levels z along Sn follow a gaussian probability density function whose parameters µSn (mean
value of isoline part) and σ (standard deviation brought by gaussian noise) are unknown.
Let Sn be defined by ω = Sn ∪ Sn.
For each pixel, the mean values µij of gray levels z over Sn are unknown and supposed independant .
Let Z be the gray levels of pixels in ω and {µij}Sn the mean values of pixels in Sn. The likelihood is
given by:

P
[
Z|Sn, µSn , {µij}Sn , σ

]
When separating contributions from regions Sn and Sn, it becomes:∏

(i,j)∈Sn
P [z(i, j)|µSn , σ].

∏
(i,j)∈Sn

P
[
z(i, j)| {µij}Sn , σ

]
(1)

The goal is then to estimate the value of the above expression, in order to find the boundaries of Sn that
maximize expression (1).
Let us consider that, on Sn, the values z(i, j) are the likelihood estimations µ̂ij for µij . The second term
of expression (1) becomes: ∏

(i,j)∈Sn
P
[
z(i, j)| {µ̂ij}Sn , σ

]
= 1 (2)

which leads to the generalized likelihood expression:∏
(i,j)∈Sn

P [z(i, j)|µSn , σ] (3)

As we know the probability density function on Sn, (3) can then be developped as∏
(i,j)∈Sn

1√
2πσ2

e−
(z(i,j)−µSn)2

2σ2 (4)

The log-likelihood is then given by:

−n
2
log (2π)− n

2
log

(
σ2
)
− n

2
(5)

inside which the vector of parameters (µSn , σ) is determined by maximum likelihood estimation
µ̂Sn =

1

n

∑
(i,j)∈Sn

z(i, j)

σ̂2 =
1

n

∑
(i,j)∈Sn

(z(i, j)− µ̂Sn)2

4

The selection of the best isoline is done by searching which one maximizes the expression of equation
(5).

Fig. 1. Determination and lengthening of an isoline: The gray level z of each pixel is seen as an elevation value. Sn is the n pixel length
isoline for pixel of coordinates (i, j). The elongation of Sn by Sp (p pixel length) is submitted to the GLRT condition (see eq. (8)).

B. Lengthenable isolines
Searching for larger isolines should lead to better filtering as a larger number of pixels would be involved.

However, processing all possible isolines starting from each pixel would be too costly in computing time,
even in the case of a small GPU-processed 512x512 pixel image. Therefore, we chose to build large
isolines step by step with a mandatory validation stage between each lengthening step, so as to reduce the
number of pixel combinations to be examined and keep the estimation of deviation σ within a satisfactory
range of values.

Let Sn be a previously selected isoline part and Sp connected to Sn in such a way that Sp could be
seen as an addition to Sn so as to define a possible valid isoline Sn+p. Figure V-A illustrates this situation
with a very simple example image. In this figure, the gray level of each pixel is used as its corresponding
height (z) in order to visualize isolines easily. Some of the orthogonal isoline projections have been drawn
in dotted line in the (~i,~j) plane. Both labeled parts Sp and Sn are represented in the (~i,~j) plane and in
the 3D associated plot.

In order to decide whether Sn+p can be considered as an actual isoline, we compare the log-likelihood
of both situations below by using GLRT (Generalized Likelihood Ratio Test):

First, assuming that Sn+p is an isoline, the gray levels of its pixels share the same mean value µn+p.
According to (5), its log-likelihood is

−(n+ p)

2
(log (2π) + 1)− (n+ p)

2
log

(
σ̂1

2
)

(6)

where σ̂1 is the estimation of deviation along Sn.
Second, considering Sn and Sp as two separate isoline parts connected together, the gray levels of their

pixels have two different mean values µn and µp. The log-likelihood is the sum of both log-likelihoods,
given by

−(n+ p)

2
(log (2π) + 1)− n

2
log

(
σ̂2

2
)
− p

2
log

(
σ̂2

2
)

(7)

where σ̂2 is the estimation of standard deviation along Sn and Sp.
The difference between (6) and (7) leads to the expression of GLRT (Sn+p, Sn, Sp, Tmax):

Tmax − (n+ p).
[
log

(
σ̂1

2
)
− log

(
σ̂2

2
)]

(8)

The decision to validate lengthening from Sn to Sn+p depends whether GLRT (Sn+p, Sn, Sp, Tmax) is
higher or lower than 0. Value Tmax is the GLRT threshold.

5

VI. ISOLINE MODELS

The most obvious model considers isolines as polylines. Each isoline can then be curved by allowing
a direction change at the end of each segment; we shall call such isolines poly-isolines.

In order to keep the number of candidate isolines within reasonable range, we chose to build them by
combinating segments described by simple pre-computed patterns. Each pattern pl,d describes a segment
of length l and direction d. For one given l value, all pl,d patterns are grouped into a matrix denoted Pl.
Figure 8 shows an example of such a pattern matrix for l = 5.

To fit the GPU-specific architecture, we define regularly distributed D primary directions (D = 32 in
our examples).

A. Poly-isolines with limited deviation angle (PI-LD)
At one stage we implemented an algorithm parsing the tree of all possible polyline configurations, but

the process proved far too slow regarding our goal, even on GPU, because of the amount of memory
involved (and consequent memory accesses) and because of the necessary reduction stage for which GPU
efficiency is not maximum. So we focused on a variant inspired by [8] in which the selected direction of
the next segment depends on the whole of the previously built and validated poly-isoline.

Let us consider a poly-isoline Sn under construction, starting from pixel (i, j) and made of K validated
segments sk (k ∈ [1;K]) of length l, each of them having its own direction dk. The coordinates of the
ending pixel of each segment sk are denoted (ik, jk). Both of the following sums

Cx (Z(Sn)) =
∑

(i,j)∈Sn
z(i, j) (9)

and Cx2 (Z(Sn)) =
∑

(i,j)∈Sn
z(i, j)2 (10)

have been obtained during the previous lengthening steps.
Let us examine now how to decide wether to add a new segment to Sn or to stop the lenghtening

process. The main idea is to apply each pattern pl,d to the ending pixel (ik, jk), on the condition that
its direction is contained within the limits of maximum deviation ∆dmax. Maximum deviation ∆dmax
prevents poly-isolines from beeing of circular shape (or backward-oriented) which would possibly generate
supplementary artefacts in the output image. Another of its benefits is to reduce the number of combinations
to be evaluated.

For each allowed pattern, GLRT is performed in order to decide if the corresponding segment could
likely be added to the end of the poly-isoline Sn. If none is validated by GLRT, the poly-isoline Sn is
stopped.

If at least one segment has been accepted by GLRT, the one that leads to the maximum likelihood
(ML) value of the lengthened poly-isoline Sn+l is selected and integrated to Sn+l as sK+1.

As the GL criterion only applies to the validated parts of poly-isolines and not to full-size eligible ones,
this method cannot, a priori, select the actual best poly-isoline.

Nevertheless, to avoid critical situations where the first selected segment would not share the primary
direction of the actual poly-isoline, no selection is performed on the level of the first segment; D poly-
isolines are kept and submitted to the lengthening process. To ensure isotropy, each of them shares the
direction of one pattern pl,d (d ∈ [0;D]).

Eventually, the poly-isoline with the maximum likelihood value is selected among the longest ones.
Figure 2 illustrates one stage of the lengthening process with the example of a two-segment poly-isoline

at the beginning of stage (l = 5 and ∆dmax = 2).

6

(a) Isoline with two vali-
dated segments s1 and s2.

(b) First evaluated seg-
ment, corresponding to pat-
tern p5,0.

(c) Second evaluated seg-
ment, corresponding to pat-
tern p5,1.

(d) Third evaluated seg-
ment, corresponding to pat-
tern p5,2.

(e) Fourth evaluated seg-
ment, corresponding to pat-
tern p5,3.

(f) Fifth evaluated seg-
ment, corresponding to pat-
tern p5,4.

Fig. 2. Example of lengthening process starting with a two-segment poly-isoline (l = 5, ∆dmax = 2). The initial situation is shown in
2a, while 2b to 2f represent the successive candidate segments. The direction index of the last validated segment is d2 = 2 (2a). It implies
that direction indexes allowed for the third segment range from d2 −∆dmax = 0 to d2 + ∆dmax = 4 (2b to 2f). The lengthening of the
poly-isoline is accepted if at least one segment has a positive GLRT. If there are several, the one which minimizes the standard deviation of
the whole poly-isoline is selected.

B. Poly-isolines with precomputed directions (PI-PD)
Though much faster, the PI-LD-based filter may be considered a bit weak compared to state-of-the-art

filters like BM3D family algorithms [4]. Furthermore, we saw that this way of building poly-isolines
requires the alternate use of two different types of validation at each lengthening stage: GLRT and
maximum likelihood minimization. In order to be performed, each of them generates numerous branches
during kernel execution, which does not fit GPU architecture well and leads to execution times that we
hoped would be more impressive.

Within the PI-LD model, at each pixel (i, j), as no selection is done at the first stage, D poly-isolines
are computed and kept as candidate though, obviously, only one follows the actual isoline at (i, j).
So, if we assume we can achieve a robust determination of the direction at any given pixel of this
isoline, it becomes unnecessary to perform the selection at each lenghtening step. Thus, at each pixel
(i, j), only the first segment has to be determined in order to obtain the local direction of the isoline.
This leads to an important reduction of the work complexity: the above PI-LD model needs to evaluate
D. (2.∆dmax + 1)K−1 segments at each pixel position, while only D.K evaluations are needed in the
second case. For example, with a maximum of K = 5 segments and a maximum deviation of ∆dmax = 2,
the PI-LD needs to evaluate up to 20000 segments per pixel where only 160 should be enough.

On the basis of these observations, we propose a new model that we shall call PI-PD, that completely
separates the validation stages performed in the PI-LD model implementation mentioned above:

A first computation stage selects the best first segment s1 starting at each pixel (i, j) of the input image.
Its direction index d1(i, j) is then stored in a reference matrix denoted IΘ; sums Cx and Cx2 along s1(i, j)
are also computed and stored in a dedicated matrix IΣ. It can be noticed that this selection method of s1

7

segments is a degraded version of PI-LD constrained by K = 1.
A second stage manages the now independant lengthening process. For one given state of a poly-isoline

where the last added segment has been sK , the pattern whose direction index is given by d = IΘ(iK , jK)
defines the only segment to be evaluated. Both corresponding sums Cx and Cx2 are read from matrix IΣ

and used in GLRT evaluation. The last point is to prevent poly-isolines from turning back.
Figure 3 details this process, starting from the same initial state as in figure 2 with the noticeable

difference that no deviation limit is needed.
Thus, as introduced above, work complexity is considerably reduced, as each pattern is only applied

once at one given pixel (i, j), and associated values are computed only once; they are re-used every time
one poly-isoline’s segment ends at pixel (i, j). Also, this fits GPU constraints better, as it avoids multiple
branches during kernel execution. It remains that, the building of poly-isolines is done without global
likelihood optimization.

Eventually, the model has been improved by adding to it the ability to thicken poly-isolines from one
pixel up to three which allows to achieve higher PSNR values by increasing the number of pixels of
poly-isolines in addition to the lengthening process. This may apply to large images which do not contain
small relevant details, as it may blur small significant details or objects present in the noisy image. Still,
this feature makes PI-PD more versatile than our reference BM3D, which requires to slice large images
prior to processing them and causes some overhead.

(a) Poly-
isoline with
two validated
segments.

(b) Next direction is read from ele-
ment (i2, j2) of IΘ.

(c) Pattern pl,d3 is then applied at
(i2, j2) and GLRT is performed.
Both sums needed to perform
GLRT are read from element
(i2, j2) of IΣ.

(d) If accepted by
GLRT, segment s3 is
added to poly-isoline.

Fig. 3. Example of PI-PD lengthening process starting with a two-segment poly-isoline (l = 5). The initial situation is represented in 3a,
while 3a to 3d represent the successive processing steps. The end pixel of the last validated segment is (i2, j2) (3a). Reference matrices IΘ
and IΣ provide the values needed to select the pattern to be applied on (i2, j2) (3b and 3c). GLRT is performed to validated lengthening or
not. This process goes on until one submitted segment does not comply with GLRT.

C. Hybrid PI-PD
As the determination of each segment’s direction only involves a few pixels, the PI-PD model may not

be robust enough in regions where the surface associated with Z has a low local slope value regarding
power of noise σ2. We shall call those regions Low Slope Regions (LSR). Figure 4 shows this lack

8

of robustness with an example of two drawings of additive white gaussian noise applied on the same
reference image (Figure 6). Within this image, we focused on a small 11x11 pixel window containing
two LSR with one sharp edge between them.

Figures 4d and 4e show that the directions computed by PI-PD are identical from one drawing to the
other near the edge (lines 5-7), while they vary in LSR (lines 1-4, 8-11).

(a) Reference image

(b) Image corrupted by ran-
dom drawing n◦1

(c) Image corrupted by ran-
dom drawing n◦2

(d) Isoline directions for
random drawing n◦1

(e) Isoline directions for
random drawing n◦2

Fig. 4. Zoom on a small square window of the airplane image. 4a reproduce the zoom on the window, taken from the reference image of
Figure 6. 4b, 4c and 4a and are 3D views where each bar represents a pixel whose gray-level corresponds to the height of the bar. Figures
4d and 4e are 2D top views of the window. The chosen window shows an edge between two regions of low slope. The images 4b and 4c
are corrupted with two different random drawings of the same additive white gaussian noise (AWGN) of power σ2 and mean value 0. 4d
and 4e show, for each pixel of the window, the direction of the isoline found by PI-PD. In regions of low slope (the two planes at the top
and the bottom), the determination of the direction is not robust. But near the edge, directions do not vary from one drawing to another.

Within such regions, our speed goals forbid us to compute isoline directions with the PI-LD model,
more robust but far too slow. Instead we propose a fast solution which implies designing an edge detector
whose principle is to re-use the segment patterns defined in section VI and to combine them by pairs in
order to detect any possible LSR around the center pixel. If a LSR is detected, the output gray-level value
is the average value computed on the current square window, otherwise, the PI-PD output value is used.

In order to further simplify computation, only the patterns that do not share any pixel are used. These
patterns have a direction which is a multiple of 45◦.

Each base direction (Θi) and its opposite (Θi + π) [2π] define a line that separates the square window
in two half-planes. We assume that segments on the limit belong to the half-plane (denoted H) which
includes pixels of orientation from Θi to Θi + π. This half-plane comprises three more segments of
directions (Θi + π

4
), (Θi + 2π

4
) and (Θi + 3π

4
). The other half-plane (denoted L) only includes three

segments of directions (Θi + 5π
4

), (Θi + 6π
4

) and (Θi + 7π
4

).
Figure 5 illustrates this organization for Θi = Θ4 = 45◦. Each bar represents a pixel in the detector’s

9

window. Pixels with null height are not involved in the GLRT. Pixels represented by higher bars define
the half-plane denoted H and those represented by shorter bars define the half-plane denoted L.

Fig. 5. Edge detector. 3D view representing an example square 11x11 pixel window (l = 5) used in the edge detector for Θ4 = 45◦ around
a center pixel colored in black. Each pixel is represented by a bar. Bars of height value 0 are for pixels that are not involved in the detector.
H plane is defined by five pattern segments and includes the center pixel. L plane only includes three pattern segments. The different height
values are meant to distinguish between each of the three different sets of pixels and their role.

For each Θi, one GLRT is performed in order to decide whether the two half-planes defined above
are likely to be seen as a single plane or as two different ones H and L, separated by an edge as shown
in figure 5. The center pixel is located on the edge. Equations (6), (7) and (8) lead to a similar GLRT
expression:

T2max − (8.l + 1).
[
log

(
σ̂3

2
)
− log

(
σ̂4

2
)]

(11)

where σ3 is the standard deviation considering that the two half-planes are likely to define a single plane
and σ4 the standard deviation if an edge is more likely to separate the two half-planes. T2max is the
decision threshold. With equation (11), a negative result leads to an edge detection, oriented towards
direction Θi. When GLRT is known for each Θi, we apply the following hybridation policy:

a) more than one negative GLRT: the PI-PD output value is used.
b) only one negative GLRT: the center pixel is likely to be on a well-defined edge, and only the

half-plane it belongs to is considered. The average value of its pixel gray levels is then used.
c) no negative GLRT: the window around the center pixel is likely to be a LSR. The average value

on the whole defined plane is used.

(a) Reference noiseless air-
plane image

(b) Location of the exam-
ple window in the reference
image.

Fig. 6. Location of the example window inside the reference image. Figure 6a shows the whole reference image and 6b zooms on the part
where the example 11x11 pixel window is.

It must be noticed that point b) has been introduced in order to achieve smoother transitions between
regions to which PI-PD is applied and those in which the plain average value is used. Figure 7 shows an
example of such a classification achieved by the edge detector. The detector has been applied on the top
noisy airplane image with a GLRT threshold value T2max = 2. Black pixels represent pixel classified as
on an edge, while white ones are those which belong to LSR.

10

(a) Noisy airplane image (b) Pixel classification per-
formed by the edge detec-
tor.

Fig. 7. Pixel classification inside the noisy image. Figure 7a shows the noisy input image and 7b reproduces the output classification of
pixels, as a black and white image, obtained with threshold value T2max = 2. Black pixels are supposed to be near an edge, while white
pixels belong to Low Slope Regions.

VII. PI-PD FILTER IMPLEMENTATION: DETAILS

All implementation details that will be given here are relative to the proposed PI-PD models and
Nvidia c© GPU devices.

A. Segment patterns
The first kernel to be run is kernel_genPaths() which generates matrix Pl. Its elements (∆i; ∆j)

are the relative coordinates of the pixels which define segment patterns pl,d. The dimensions of matrix Pl
are D rows × l columns. To fit GPU architecture as closely as possible, we chose D = 32 patterns. Each
segment sk of a poly-isoline can then be seen as a pattern pl,d applied on the starting pixel (i, j) of this
segment, denoted pl,d(i, j).

The example in figure 8 shows the first quarter of P5 and the corresponding eight discrete segment
patterns in the first quadrant. The three remaining quarters of the matrix are easily deduced by applying
successive rotations of angle π

2
to the above elements.

B. Generation of reference matrices IΣ and IΘ

In order to generate both matrices, a GPU kernel kernel_precomp() computes:
• the direction δ of the most likely segment s1 = pl,δ(i, j) among the D possible ones. This value is

stored in matrix IΘ at position (i, j).
• values Cx(s1) and Cx2(s1) defined in equations (9) and (10). This vector of values is stored in matrix
IΣ at position (i, j).

in parallel for each pixel (i, j).
In order to reduce processing time, the input image is first copied into texture memory (see algorithm

4 for initializations and memory transfer details), thus taking advantage of the 2D optimized caching
mechanism.

This kernel follows the one thread per pixel rule. Consequently, each value of Pl has to be accessed
by every thread of a block. That led us to load it from texture memory first, then copy it into all shared
memory blocks. This has proved to be the fastest scheme.

Algorithm 1 summarizes the computations achieved by kernel_precomp(). Vector (Cx, Cx2) stores
the values of Cx(s1) and Cx2(s1) associated with the current tested pattern. Vector (Cx−best, Cx2−best) stores
the values of Cx(s1) and Cx2(s1) associated with the best previously tested pattern.

In the same manner, σ and σbest are deviation values for current and best tested patterns.
The selection of the best pattern is driven by the value of the standard deviation of candidate isolines.

Lines 2 and 3 compute both sums for the first pattern to be evaluated. Line 4 computes its standard
deviation. Then, lines 5 to 14 loop on each pattern and keep values associated with the best pattern found.
These values are eventually stored in matrices IΘ and IΣ on lines 16 and 17.

11

P5 =



(0, 1) (0, 2) (0, 3) (0, 4) (0, 5)

(0, 1) (0, 2) (−1, 3) (−1, 4) (−1, 5)

(0, 1) (−1, 2) (−1, 3) (−2, 4) (−2, 5)

(−1, 1) (−1, 2) (−2, 3) (−3, 4) (−3, 5)

(−1, 1) (−2, 2) (−3, 3) (−4, 4) (−5, 5)

(−1, 1) (−2, 1) (−3, 2) (−4, 3) (−5, 3)

(−1, 0) (−2, 1) (−3, 1) (−4, 2) (−5, 2)

(−1, 0) (−2, 0) (−3, 1) (−4, 1) (−5, 1)

.



Fig. 8. Top: example segment patterns p5,d for d ∈ [0; 7]; the black pixel represents the center pixel (i, j), which does not belong to
the pattern. The gray ones define the actual pattern segments. Bottom: the first 8 lines of corresponding matrix P5 whose elements are the
positions of segment pixels with respect to the center pixel.

C. PI-PD lengthening process: kernel_PIPD()
The last parallel kernel to be run in order to obtain the rebuilt image is kernel_PIPD(), which is

detailed in algorithm 2, (see section VI-B for process description).
Lines from 2 to 11 perform allocations for the first lengthening to evaluate. More precisely, (i1, j1)

represents the starting pixel of the current segment; (i2, j2) is both its ending pixel and the starting pixel
of the next segment; d1 and d2 are their directions, read from precomputed matrix IΘ. C1

x and C1
x2 are

the gray-level sums along the current poly-isoline; C2
x and C2

x2 are the gray-level sums of the candidate
segment. The current poly-isoline ends at (i1, j1) and is made of l1 pixels (already accepted segments);
its standard deviation is σ1. The loop extending from lines 12 to 21 performs the allocations needed
to proceed one segment forward, as long as GLRT is true. If the lengthening has been accepted, the
length of the poly-isoline is updated in line 13, and the same is done with Cx and Cx2 which are read
from precomputed matrix IΣ (see equations (9) and (10) for definition). Finally, using direction value
d2, it translates the coordinates (i1, j1) to the end of the newly elongated poly-isoline, and (i2, j2) to the
end of the next segment to be tested. As soon as the GLRT condition becomes false, line 23 eventually
produces the output value of the rebuilt image at pixel (i, j), that is, the average gray-level value along
the poly-isoline.

D. hybrid PI-PD : kernel_edge_detector()
As introduced in section VI-C, the aim of kernel kernel_edge_detector() is to divide pixels into

two classes according to their belonging to a LSR or not. Algorithm 3 explains the detailled procedure.

12

Algorithm 1: generation of reference matrices, kernel kernel_precomp()
1: foreach pixel (i, j) do /* in parallel */
2: Cx−best ←

∑
(y,x)∈pl,0(i,j)

Intex(i+ y, j + x) ;

3: Cx2−best ←
∑

(y,x)∈pl,0(i,j)

I2
ntex(i+ y, j + x) ;

4: σbest ← standard deviation along pl,0(i, j) ;
/* loop on each pattern */

5: foreach d ∈ [1;D − 1] do
6: Cx ←

∑
(y,x)∈pl,d(i,j)

Intex(i+ y, j + x);

7: Cx2 ←
∑

(y,x)∈pl,d(i,j)

I2
ntex(i+ y, j + x);

8: σ ← standard deviation along pl,d(i, j);
9: if σd < σbest then /* keep the best */

10: Cx−best ← Cx ;
11: Cx2−best ← Cx2 ;
12: Θbest ← d ;
13: end
14: end
15: IΣ(i, j)← [Cx−best, Cx2−best] ; /* stores */
16: IΘ(i, j)← Θbest ; /* in matrices */
17: end

Lines 2 to 6 initialize values of the direction index (Θ), the number of edges detected (edgeCount), the
gray-level sum along the pixels that defines the H half-plane (sumEdge) and the number of pixels that
defines both half-planes H and L (nH , nL). Then the loop starting at line 7 performs the GLRT for every
considered direction index Θ. Values sumH and sumL are vectors of two parameters x and y, parameter
x being the sum of gray-level values and y the sum of square gray-level values. Value sumH is computed
along the pixels of half-plane H and is obtained by loop at lines 10 to 14; Value sumL is computed
along the pixels of half-plane L and is obtained by loop at lines 15 to 19. Value Intex(i, j) refers to the
gray-level value at pixel (i,j) previously stored in texture memory. Eventually, the isoline level value is
output at line 27, 30 or 33 depending on the situation (see VI-C for details about the decision process).

VIII. RESULTS

The proposed PI-PD and hybrid PI-PD models have been evaluated with the 512x512 pixel sample
images used by DenoiseLab [9] in order to make relevant comparisons with other filtering techniques.
Also, we chose to focus on the noisiest versions, degraded by additive white gaussian noise of standard
deviation σ = 25.

Analyzing ouput images produced by PI-LD reveals that the primary direction of a poly-isoline (i.e.
the direction of its first segment) most often reflects the direction of the most likely segment which could
have been selected by a constrained PI-LD model where K = 1 (denoted PI-LDK=1). It mostly confirms
our assumption that computing the primary direction at each pixel can be considered sufficient provided
that it can be done with enough robustness.

Figure 9 shows an example histogram of the differences in primary directions according to the PI-LD
model between maximum number of segments K = 1 (i.e. PI-PD) and K = 8 (l = 4 in both cases). It
appears that more than 60% of the isolines share the same direction and more than 80% differ by less
than 22.5 degrees. The same histogram’s shape would be obtained with all thirteen images in the panel,

13

Algorithm 2: PI-PD lengthening process kernel_PIPD()
1: foreach pixel (i, j) do /* in parallel */
2: (C1

x, C
1
x2)← z(i, j) ; /* starting pixel */

3: (i1, j1)← (i, j) ; /* first segment */
4: (C1

x, C
1
x2)← IΣ(i1, j1) ; /* read matrix */

5: d1 ← IΘ(i, j) ; /* read matrix */
6: l1 ← l ; /* isoline length */
7: σ1 ← (C1

x2/l1 − C1
x)/l1;

8: (i2, j2)← end of first segment;
9: (C2

x, C
2
x2)← IΣ(i2, j2) ; /* 2nd segment */

10: d2 ← IΘ(i2, j2);
11: σ2 ← (C2

x2/l − C2
x)/l ;

12: while GLRT (σ1, σ2, l1, l) < Tmax do
13: l1 ← l1 + l ; /* lengthening */
14: (C1

x, C
1
x2)← (C1

x, C
1
x2) + (C2

x, C
2
x2);

15: σ1 ← (C1
x2/l1 − C1

x)/l1 ; /* update */
16: (i1, j1)← (i2, j2) ; /* step forward */
17: d1 ← d2;
18: (i2, j2)← end of next segment;

/* next segment */ (C2
x, C

2
x2)← IΣ(i2, j2);

19: d2 ← IΘ(i2, j2);
20: σ2 ← (C2

s2/l − C2
s)/l ;

21: end
22: end
23: Î(i, j)← C1

x/l1 ; /* isoline value */

with little variation. The estimation of isoline directions of the remaining 40% pixels is not robust and
leads to different direction values as the pixels belong to low slope regions.

Fig. 9. Example of angular differences between the results of PI-LDK=1 and PI-LDK=8 variants of the model (l = 4). The above histogram
represents the number of pixels as a function of the angular difference (in percentage of the total number of pixels of the image). The mandrill
image is the input image processed in the example.

Quality measurements of the rebuilt images in comparison with reference images have been obtained
by the evaluation of:

a) Peak Signal to Noise Ratio (PSNR) that quantifies the mean square error between rebuilt and

14

Image Noisy hybrid PI-PD PI-PD BM3D
airplane 19.49dB 28.46dB 28.47dB 30.88dB

0.58 0.88 0.87 0.93
barbara 20.04dB 24.26dB 24.22dB 30.60dB

0.70 0.83 0.82 0.94
boat 20.33dB 27.54dB 27.55dB 30.02dB

0.66 0.87 0.87 0.91
couple 20.28dB 27.33dB 27.37dB 29.77dB

0.69 0.87 0.87 0.91
elaine 19.85dB 28.94dB 28.86dB 30.60dB

0.59 0.87 0.86 0.91
fingerprint 20.34dB 26.07dB 26.65dB 27.93dB

0.93 0.95 0.95 0.96
goldhill 19.59dB 27.43dB 27.46dB 29.22dB

0.67 0.87 0.87 0.88
lena 19.92dB 29.14dB 29.09dB 31.80dB

0.60 0.88 0.87 0.93
man 20.38dB 26.74dB 26.80dB 28.14dB

0.71 0.86 0.86 0.87
mandrill 19.34dB 22.38dB 22.44dB 24.75dB

0.77 0.83 0.84 0.88
peppers 19.53dB 28.68dB 28.60dB 30.87dB

0.61 0.87 0.86 0.92
stream 20.35dB 25.35dB 25.41dB 26.34dB

0.80 0.87 0.88 0.88
zelda 17.71dB 27.71dB 27.64dB 30.49dB

0.58 0.88 0.87 0.93

Fig. 10. Comparisons between hybrid PI-PD, PI-PD and BM3D filters. PI-PD parameter values: n = 25, l = 5, Tmax = 1 and T2max = 2.
Timings: PI-PD in around 4.0 ms, hybrid PI-PD in around 12.0 ms and BM3D in around 4.3 s

reference images: MSE(I, Î). We used the following expression:

PSNR = 10.log10

(
max(Î)

MSE(I, Î)

)
b) The Mean Structure Similarity Index (MSSIM, defined in [12]), which quantifies local similarities

between rebuilt and reference images inside a sliding window.
Result figure 10 provides the PSNR and MSSIM of images rebuilt with PI-PD and hybrid PI-PD. It

also provides the PSNR and MSSIM of the images processed by the BM3D filter proposed in [4] and
taken as a reference.

PI-PD measurements were performed with n = 25, l = 5, Tmax = 1 and T2max = 2 for hybrid PI-PD.
BM3D measurements have been performed with the freely available BM3D software proposed in [4].

Both hybrid and plain PI-PD models, though they do not achieve such impressive PSNR values as
BM3D does, prove to be much faster. The plain PI-PD rebuilds each test image in around 4 ms, and thus
proves around 1000 times as fast as the implementation of BM3D which runs in around 4.3 s; the hybrid
PI-PD provides better results at the cost of slightly inferior speeds, around 12 ms per image.

It must be noticed that the parameter values Tmax = 1 and T2max = 2 have been chosen as a
compromise. In certain cases, a better result is obtained with a slightly different value of T2max. For
example peppers or zelda rebuilt images can obtain a MSSIM index of 0.90.

Figure 11 shows rebuilt images produced by PI-PD models compared with the output of the BM3D
filter. The figure illustrates the merits and drawbacks of each model: edges are well preserved by simple PI-
PD, but a staircase effect is clearly visible (a well-known artefact inherent to this type of neighborhood
filters), while the hybrid PI-PD generates fewer circular shape artefacts within low slope regions (see
section VI-C).

15

IX. CONCLUSION, FUTURE WORKS

From the start, our approach, unlike quite a few others, has been to base this study on the conception
and characteristics of the targeted hardware (Nvidia Graphic cards).

So as to get high execution speeds, we chose, for example, to find a method that remains local
(concentrating on the immediate neighborhood of the center pixel), but still provides very significant
benefits, using our technique of progressive lengthening.

Nevertheless, our method has proved slightly sub-optimal and lacking robustness in flat regions (see
above, Low Slope Regions), even if the actual visual effect may be considered quite satisfactory.

As a first step to address the above drawbacks, we have devised a hybrid method that detects and applies
distinct processing to LSR regions (see above). Processing speeds remain very fast, and much higher than
the BM3D implementation taken as reference. This is very promising, and opens the perspective of real-
time image sequence processing at 25 fps.

With this method, searching for best improvement factors leads to different parameters values (GLRT
thresholds) for each image processed, which prompts to studying some way of overriding such parameters.
To further improve the quality of output images, it would also be interesting to implement the staircase
effect reduction technique developed by [13] on GPU, on the condition that it fits parralelization efficiently.

Our study so far has been based on additive noise; we are currently working on transposing criteria to
various multiplicative noise types, as well as extending processes to color images.

Aknowledgements: We thank Ingrid Couturier and Daniel Cuney for their help in refining the use of
English in this paper.

REFERENCES

[1] G. Matheron, Random sets and integral geometry. Wiley, 1975.
[2] M. McGuire, “A fast, small-radius gpu median filter,” in ShaderX6, February 2008. [Online]. Available:

http://graphics.cs.williams.edu/papers/MedianShaderX6
[3] B. Coll, J.-M. Morel, and A. Buades, “Non-local Means Denoising,” Image Processing On Line, 2011.
[4] K. Dabov, R. Foi, V. Katkovnik, and K. Egiazarian, “Bm3d image denoising with shape-adaptive principal component analysis,” in

Proc. Workshop on Signal Processing with Adaptive Sparse Structured Representations (SPARS’09, 2009.
[5] F. Palhano Xavier De Fontes, G. Andrade Barroso, P. Coupé, and P. Hellier, “Real time ultrasound image denoising,” Journal of

Real-Time Image Processing, May 2010. [Online]. Available: http://hal.inria.fr/inria-00476122
[6] V. Caselles, B. Coll, and J.-M. Morel, “Scale space versus topographic map for natural images.” Springer, 07 1997, pp. 29–49.
[7] P. Monasse and F. Guichard, “Scale-space from a level lines tree,” in Scale-Space Theories in Computer Vision, ser. Lecture Notes in

Computer Science, M. Nielsen, P. Johansen, O. Olsen, and J. Weickert, Eds. Springer Berlin / Heidelberg, 1999, vol. 1682, pp.
175–186, 10.1007/3-540-48236-9 16. [Online]. Available: http://dx.doi.org/10.1007/3-540-48236-9 16

[8] N. Bertaux, Y. Frauel, P. Réfrégier, and B. Javidi, “Speckle removal using a maximum-likelihood technique with
isoline gray-level regularization,” J. Opt. Soc. Am. A, vol. 21, no. 12, pp. 2283–2291, Dec 2004. [Online]. Available:
http://josaa.osa.org/abstract.cfm?URI=josaa-21-12-2283

[9] DenoiseLab Philosophy: A Standard Test Set and Evaluation Method to Compare Denoising Algorithms, Oct. 2007.
[10] A. Buades, B. Coll, and J. Morel, “A review of image denoising algorithms, with a new one,” Multiscale Modeling and Simulation,

vol. 4, no. 2, pp. 490–530, 2005.
[11] NVIDIA CUDA C Programming Guide v3.1.1, NVIDIA Corporation, 7 2010.
[12] Z. Wang, A. C. Bovik, H. R. Sheikh, S. Member, E. P. Simoncelli, and S. Member, “Image quality assessment: From error visibility

to structural similarity,” IEEE Transactions on Image Processing, vol. 13, pp. 600–612, 2004.
[13] A. Buades, B. Coll, and J.-M. Morel, “The staircasing effect in neighborhood filters and its solution,” IEEE Transactions on Image

Processing, vol. 15, no. 6, pp. 1499–1505, 2006.

16

Algorithm 3: edge detector and pixel classifier kernel_edge_detector()
1: foreach pixel (i, j) do /* in parallel */
2: Θ← 0; /* direction index */
3: edgeCount← 0;
4: sumEdge← 0;
5: nH ← 5l + 1;
6: nL← 3l;
7: while (Θ < 32) do
8: sumH ← (Intex(i, j), I

2
ntex(i, j));

9: sumL← (0, 0);
10: for (α = Θ to α = Θ + 16 by step 4) do
11: sPat←

∑
(y,x)∈Pl,α(i,j)

Intex(i+ y, j + x);

12: sPat2←
∑

(y,x)∈Pl,α(i,j)

I2
ntex(i+ y, j + x);

13: sumH ← sumH + (sPat, sPat2);
14: end
15: for (α = Θ + 20 to α = Θ + 28 by step 4) do
16: sPat←

∑
(y,x)∈Pl,α(i,j)

Intex(i+ y, j + x);

17: sPat2←
∑

(y,x)∈Pl,α(i,j)

I2
ntex(i+ y, j + x);

18: sumL← sumL+ (sPat, sPat2);
19: end
20: if (GLRT (sumH, nH, sumL, nL) > T2max) then
21: edgeCount← edgeCount+ 1;
22: sumEdge← sumH.x;
23: end
24: Θ← Θ + 4;
25: end

/* outputs isoline value */
26: if (edgeCount == 0) then

27: Î(i, j)← (sumH.x+ sumL.x)

nH + nL
; /* LSR */

28: end
29: if (edgeCount == 1) then

30: Î(i, j)← (sumEdge)

nH
31: end
32: if (edgeCount > 1) then
33: Î(i, j)← ̂IPIPD(i, j); /* PI-PD */
34: end
35: end

17

Algorithm 4: Initializations in GPU memory
1: l← step size;
2: D ← number of primary directions;
3: In ← noisy image;
4: Intex ← In; /* copy to texture mem. */
5: Pl ← kernel genPaths ; /* pattern matrix */
6: Pltex ← Pl; /* copy to texture mem. */
7: Tmax ← GLRT threshold;

(a) Noisy image σ = 25 (b) PI-PD filter, n = 50,
l = 4, Tmax = 2, in
4.0 ms

(c) PI-PD hybrid filter, n =
50, l = 4, Tmax = 2,
T2max = 2, in 12 ms

(d) BM3D filter, in 4.3s

Fig. 11. Comparison of 512x512 images rebuilt from noisy airplane image (11a) with a PI-PD filter (11b), PI-PD hybrid filter (11c) and
BM3D filter (11d). Only zoomed parts of images are shown in order to ensure better viewing.

