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LIFC FRESNEL
Image segmentation

Definition, goal
- Dividing an image in two homogeneous regions.
- Reducing the amount of data needed to code information.
- Helping the human perception in certain cases.
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LIFC FRESNEL
Images of our interest

Origins
- Synthetic Aperture RADAR (S.A.R.),
- Ultrasonic (medical imaging),
- Photographic (IR, nightshots).

Characteristics
- 16 bit-coded gray levels,
- From 10 Mpixels to more than 100 Mpixels,

- Very noisy.
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Algorithm basics : criterion

Image (1) @ The goal is to find the most likely
contour I" (number and positions of
nodes).

- ortour (1) @ The criterion used is a Generalized

> , Likelihood one .
F pixels In the Gaussian case, it is given by
1 2 oo (552
background (B) GL = 5 [nB.log (UB ) + nr.log (O’T )]
ng pixels
pi
L pixels = where oq is the estimation of the

deviation o for the region Q.
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Algorithm basics : parameters estimation

@ Based on the Green-Ostogradsky theorem, Chesnaud has
shown how to replace those 2-dimensions sums inside the
contour by 1-dimension sums along the contour.

@ This optimization implies:

o the precomputation of a few matrices (called cumulated
images) containing the potential contributions of each pixel
of the image,

o the use of constant lookup tables of weighting coefficients
to determine the contributions of each segment of pixels.
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LIFC e
Snake algorithm in action

@ 15 Mpixels image
(SSE implementation
limit).

@ [nitial contour: 4 nodes.
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LIFC e
Snake algorithm in action

@ End of first iteration: no
more move can be of
interest.
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LIFC e
Snake algorithm in action

@ Nodes added in the
middle of segments.
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Snake algorithm in action

@ End of second iteration.
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LIFC e
Snake algorithm in action

@ End of fifth iteration
(36 nodes).

G. Perrot Snake GPU 7/1



0 \

LIFC e
GPU implementation: prior knowledge

@ The parallelism of a modern GPU lays on a SIMT
paradigm (Single Instruction Multiple Threads): the same
instruction is processed by a great number of threads at a
time (up to 2'6).

@ Threads are compounded in independants blocks with no
possible synchronization between blocks.

@ Threads in a block share a small amount of shared
memory (16-48 KBytes).

@ There are restrictive conditions to be fullfilled in order to
make efficent accesses to global and shared memory.

@ Data transfers between CPU and GPU are slow.
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GPU implementation: precomputations

@ One of the cumulated images is not to be computed
anymore: values are evaluated on the fly.

@ An inclusive parallel prefixsum is performed on each row of
the image for each matrix to be processed (z,2).

» Speedup is around x7 for images larger than 100 MPixels.
Comparison is done with the SSE/CPU implementation of
the PhyTI group.

» Higher speedups (x15) are obtained with specific versions
for constant image sizes.
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GPU implementation: nodes move

To select the possible next position of a node:
@ Parameters of the corresponding contour have to be
estimated.

@ Then the value of the criterion can be obtained and
compared with the previous one.

@ The parallelization needs reside essentially in the
parameters estimation.
Two possible parallelism levels:
@ One contour per thread.
e One pixel per thread.
» The one pixel per thread rule is far more efficient, due to
memory access constraints.
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LIFC FRESNEL
GPU implementation: parallelization

8 tests positions around node F;
000 3 @ Every 16 segments for every

o ¢ o L even/odd nodes are processed in
: parallel.

@ Fits GPU specific parallelism:
each pixel is processed by a
thread.

segment with
1 thread per row | :

sals

.

R ) segment witho o o
node P 1 thread per column
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GPU implementation: data structure

The main idea is to organize, in a single array, every pixels of
every segments to be processed.
Thus, for a given state of the contour (N nodes), we:
@ Find the largest segment to be processed. It gives:
o the block size bs of the computing grid,
e the number of blocks needed for each segment (N7g).
© Compute in parallel, the coordinates of every pixels of the
16.N segments to be considered,

© Make some parallel reductions to finally obtain parameters
estimation.
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GPU implementation: data structure

it Hihiiit i

block1 block Nrg — 1

block 0
Nrg blocks of bs threads for one segment
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GPU implementation: data structure
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GPU implementation: data structure
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LIFC
GPU implementation: data structure

I B I BRI

ock 0 block1 block N7g — 1
N5 blocks of bs threads for one segment
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LIFC FRESNEL
GPU implementation: first results

@ Global speedup around x7-x8 for image sizes from 15 to
150 Mpixels.
o First iterations have higher speedups:
o several large segments,
o few inactive threads in the grid.
@ Last iterations are sometimes slower than on CPU:

o a lot of small segments,
e more inactive threads in the grid.
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GPU implementation: smart init (reasons)

@ The target shape is often far from initial contour,

@ It causes the very first iteration to be much more
time-consuming than the other ones.

@ Horizontal segments contributions are null.

@ Vertical segments contributions computations can be fast,
through a specific process.

» |t’s fast to find a rectangle near the target.
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GPU implementation: smart init (process)

@ Realize a periodic sampling
of a few hundreds of
J-coordinates.

@ Evaluate in parallel every
possible rectangle of
diagonal (0, ) — (H, jH)-

@ Select the one with the best
GL criterion.

@ j, and jy are now
considered as constants.
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GPU implementation: smart init (process)

@ Given j; and jy.

@ Realize a periodic sampling
of a few hundreds of
I-coordinates.

@ Evaluate in parallel every
possible rectangle of
diagonal (iz,ji) — (iH:JjH)-

@ Select the one with the best
GL criterion.
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GPU implementation: enhancement

@ Global speedup around x10 for image sizes from 15 to
150 Mpixels and a small enough target (as in the example)

@ Less than 0.6 second for the 150 Mpixels image of this
example.
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Conclusion, future works

@ Interesting speedups
@ Original algorithm is not GPU-friendly

@ Future works:

e Finding a more suited structure to describe the contour.

e Switching to a statistical model independant from a PDF:
the potts model.

o Benefit from recent features of CUDA v4 (overlapping,
multiple kernels)

e Extend to a multiple targets algorithm, based on this single
target elementary piece of code.
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