
GPU implementation of a region based algorithm
for large images segmentation

Gilles Perrot1, Stéphane Domas1, Raphaël Couturier1, Nicolas Bertaux2

1Distributed Numerical Algorithmics team (AND), Laboratoire d’Informatique de Franche-comté
Rue Engel Gros, 90000 Belfort, France.

forename.name@univ-fcomte.fr
2 Institut Fresnel, CNRS, Aix-Marseille Université, Ecole Centrale Marseille,

Campus de Saint-Jérôme, 13013 Marseille, France.
nicolas.bertaux@ec-marseille.fr

Abstract—Image segmentation is one of the most challeng-
ing issues in image computing. In this work, we focus on
region-based active contour techniques (snakes) as they seem
to achieve a high level of robustness and fit with a large
range of applications. Some algorithmic optimizations provide
significant speedups, but even so, execution times are still
non-neglectable with the continuing increase of image sizes.
Moreover, these algorithms are not well suited for running on
multi-core CPU’s. At the same time, recent developments of
Graphical Processing Units (GPU) suggest that higher speedups
could be obtained by use of their specific design. We have
managed to adapt a specially efficient snake algorithm that
fits recent Nvidia GPU architecture and takes advantage of
its massive multithreaded execution capabilities. The speedup
obtained is most often around 7.

Keywords-GPU; segmentation; snake;

I. INTRODUCTION

Segmentation and shape detection are still key issues in
image computing. These techniques are used in numerous
fields ranging from medical imaging to video tracking, shape
recognition or localization. Since 1988, the active contours
(snakes) introduced by and Kass et al. [1], have proved to
be efficient and robust, especially against noise, for a wide
range of image types.

The main shortcoming of these algorithms is often their
high dependence on the initial contour, though several con-
tributions have lowered this dependency and also brought
more accurate segmentation of non convex shape [2].

The information that drives a contour model comes either
from the contour itself or from the characteristics of the
regions it defines. For noisy images, the second option is
often more suitable as it takes into account the statistical
fluctuations of the pixels. One approach [2] proposes a
geometric (polygonal) region-based snake driven by the
minimization of the likelihood (ML).

An important issue of image processing, especially seg-
mentation, has always been the computation time of most
algorithms. Over the years, the increase of CPU computing
capabilities, although quite impressive, has not been able
to fulfill the combined needs of growing resolution and

real-time computation. Since having been introduced in
the early 1980’s, the capabilities and speed of graphics
accelerators have always been increasing. So much so that
the recent GPGPU (General Purpose Graphic Processing
Units) currently benefit by a massively parallel architecture
for general purpose programming, especially when dealing
with large matrices or vectors. On the other hand, their
specific design obviously imposes a number of limitations
and constraints.

A. Related work

Since the main issue with most of the segmentation
methods is the computational effort it implies, researchers
have recently tried to benefit from the GPGPU architecture
to reduce time costs. In [3] authors achieve impressive
speed-ups on a range of contour detection algorithms on the
condition that they are applied to images with good contrast
and SNR (Signal-to-Noise Ratio). Others, like [4], have
focused on the related issues of segmentation and tracking:
this proves efficient in processing low-contrast images, but
imposes limits as to the size of images that cannot be of big
dimensions (several million pixels). One third option, para-
metric snakes, has also been investigated with some success,
as in [5], although the principle of computation per small
tile is not suited to the algorithm we have implemented. In
the medical imaging field, some researchers have implement
efficient parallel segmentation algorithms. For example in
[6], auhtors implement a GPU watershed-based algorithm,
but source images are considered with a good contrast.

B. Contribution

The geometric snake we have focused on has proved to
be efficient processing real-life images, with poor SNR and
contrast. However, the required computational effort still
imposes limits to the size of a wide range of images to be
processed, such as the output of SAR (Synthetic Aperture
Radar). Our goal was then to propose a way to fit such a
region-based snake algorithm to the Nvidia Tesla c© GPU

architecture. The remainder of this paper exposes the prin-
ciples of the algorithm and notations in section II. Section
III deals with the details of sequential CPU implementation.
Section IV summarizes the main features of the Nvidia c©
GPU and explains how to deal with them efficiently. Then
sections V and VI detail our GPU implementation and
timing results. In our conclusion VII we attempt to evaluate
the pros and cons of this implementation, and suggest further
tracks to be investigated in future research.

II. SEQUENTIAL ALGORITHM: OUTLINES

The goal of the active contour segmentation method
(snake) we studied [2] is to distinguish, inside an image I , a
target region T from the background region B. The size of I
is L x H pixels of coordinates (i, j) and gray level z(i, j). Z
represents the gray levels data of I . We assume that the gray
levels of T and B are vectors of independent and identically
distributed values, each with a probability density function
(PDF) pΩ (Ω ∈ {T ;B}). The present implementation uses a
Gaussian PDF, but another one can easily be used as Gamma
or Poisson (Cf. [2]).

The active contour S, which defines the shape of T is
chosen as polygonal. The purpose of the segmentation is
then to determine the shape that optimizes a generalized log-
likelihood-based criterion (GL). This is done by an iterative
process which is initialized with an arbitrary shape, then at
each step:

1) it modifies the shape
2) it estimates the parameters of the Gaussian functions

for the two regions and evaluates the criterion.
3) it validates the new shape if the criterion has a better

value.
A simplified description of it is given in Algorithm 1 which
features two nested loops: the main one, on iteration level,
is responsible for tuning the number of nodes; the inner
one, on step level, takes care of finding the best shape for a
given number of nodes. Figure 1 shows intermediate results
at iteration level. Sub-figure 1a shows the initial rectangular
shape, 1b shows the best four-node shape that ends the first
iteration. Sub-figures 1c and 1d show the best shape for an
eight-node contour (resp. 29-node) which occurs at the end
of the second iteration (resp. fourth).

III. SEQUENTIAL ALGORITHM: DETAILS

A. Criterion
Let pΩ be a Gaussian PDF. Its vector of parameters ΘΩ

(Ω ∈ {T ;B}) has two components, the average value µ and
the standard deviation σ. The likelihood for the regions Ω
(Ω ∈ {T ;B}) is given by

P [Z|T,B,ΘT ,ΘB] = P (Z|T,ΘT)P (Z|B,ΘB)

where

P (Z|Ω,ΘΩ) =
∏

(i,j)∈Ω

pΩ[z(i, j),ΘΩ] (Ω ∈ {T ;B})

Algorithm 1: Sequential algorithm: outlines

1: begin with a rectangular 4 nodes contour;
2: repeat /* iteration level */
3: repeat /* step level */
4: Test some other positions for each node, near

its current position;
5: Find the best GL and adjust the node’s position;
6: until no more node can be moved;
7: Add a node in the middle of each long enough

segment;
8: until no more node can be added;

(a) Initial contour (b) End of first iteration (4
nodes)

(c) End of second iteration (8
nodes)

(d) End of fourth iteration (29
nodes)

Figure 1. segmentation of a noisy image

The log-likelihood of the region Ω is then

−NΩ log
(√

2π
)
−NΩ.log (σ)− 1

2σ2

∑
(i,j)∈Ω

(z(i, j)− µ)
2

inside which the vectors of parameters ΘΩ are determined
by ML estimation

Θ̂Ω

µ̂Ω = 1

NΩ

∑
(i,j)∈Ω

z(i, j)

σ̂2
Ω = 1

NΩ

∑
(i,j)∈Ω

(z(i, j)− µ̂Ω)
2

Considering the two regions, the criterion to be optimized
is then, up to a constant, the Generalized Likelihood (GL):

GL =
1

2

(
NB log

(
σ̂B

2
)

+NT log
(
σ̂T

2
))

B. CPU implementation

Let Sn,l be the polygonal contour state at step l of
iteration n, and Si

n,l the node i of Sn,l (i ∈ [0;Nn]).

Si,w
n,l is the neighbor of index ω of the node Si

n,l in a 8-
connexity meaning with d pixels scope. Each segment of
Sn,l is considered as an oriented list of discrete points.
Chesnaud & Réfrégier, based on the Green-Ostogradski
theorem, have shown how to replace the 2 dimensions (2D)
sums needed to estimate ΘΩ by 1 dimension sums along Sn,l

[2]. This approach leads to compute a pair of transformed
images, called cumulated images, at the very beginning of
the process, which are then used as lookup tables. It also
involves weighting coefficients for pixels and segments of
the contour. See [2] for details. Therefore, beyond this point,
we will talk about the contribution of each point to the 1D
sums. By extension, we also talk about the contribution of
each segment to the 1D sums.

A more detailed description of the sequential algorithm
is given by Algorithm 2. The process starts with the com-
putation of cumulated images; an initialization stage takes
place from line 3 to line 9. Then we recognize the two
nested loops (line 10 and line 11) and finally the heart of
the algorithm stands on line 15 which represents the main
part of the calculations to be done:

1) compute the various sums without the contributions of
both segments connected to current node Si

n,l.
2) compute the contributions of both segments, which

requires:

• To determine the coordinates of every discrete
pixel of both segments connected to Si,w

n,l .
• To compute every pixel contribution.
• To sum pixel contributions to obtain segment

contributions.

3) compute the GL given the contribution of each seg-
ment of the tested contour.

The profiling results of the CPU implementation shown
in Figure 2 display the relative costs of the most time-
consuming functions. It appears that more than 80% of the
total execution time is always spent by only three functions:

• compute_segment_contribution() which is
responsible for point 2 above,

• compute_cumulated_images() which computes
the 3 lookup tables at the very beginning,

• compute_pixels_coordinate() which is
called by compute_segment_contribution().

Measurements have been performed for several image
sizes from 15 MPixels (about 3900 x 3900) to 144 MPixels
(about 12000 x 12000). On the one hand, we can notice
that function compute_segment_contribution()
always lasts more than 45% of the total running time, and
even more when the image gets larger. On the other hand,
the function compute_cumulated_images() costs
more than 23%, decreasing with image size, while func-
tion compute_pixels_coordinate() always takes
around 6%. It confirms that the need for parallelization

Algorithm 2: Sequential simplified algorithm

1: read image from source (Hard Disk Drive);
2: compute cumulated images();
3: iteration n← 0;
4: N0 ← 4;
5: Sn,l ← S0,0;
6: step d← dmax an arbitrary power of 2 value;
7: current node Si

0,0 ← S0
0,0;

8: l← 0;
9: compute GLref , the GL of Sn,0;

10: repeat /* iteration level, n index */
11: repeat /* step level, l index */
12: for i = 0 to Nn do
13: Si,w

n,l (w ∈ [0; 7]) are the neighbors of Si
n,l

by d pixels;
14: for w = 0 to 7 do
15: compute GLw for Sn,l when Si,w

n,l

replaces Si
n,l ;

16: if GLw is better than GLref then
GLref ← GLw;

17: move node Si
n,l ← Si,w

n,l ;
18: end
19: end
20: l← l + 1;
21: until no node move occured;
22: add new nodes, Nn ← Nn +Nnewnodes;
23: if d > 1 then d← d/2 else d = 1 ;
24: n← n+ 1;
25: compute GLref , the GL of Sn,0 ;
26: until no new node added;

Figure 2. the three most-consumming functions for various image sizes

resides in line 15 and line 2 of Algorithm 2 as they contain
every call to those three functions.

The following sections detail how we managed to im-
plement these time-consumming functions in parallel, but
a brief reminder on GPU’s recent architecture is presented
first.

IV. NVIDIA’S GPU ARCHITECTURE

GPUs are multi-core, multi-threaded processors, opti-
mized for highly parallel computation. Their design focuses
on a Single Instruction Multiple Threads (SIMT) model
by devoting more transistors to data processing rather than
data-caching and flow control [7]. For example, a C2050
card features 3GB of global memory and a total of 448
cores bundled in several Streaming Multiprocessors (SM).
An amount of shared memory, much faster than the global
memory, is avalaible on each SM (from 16 KB to 487 KB)

Writing efficient code for such architectures is not obvi-
ous, as re-serialization must be avoided as much as possible.
Thus, when designing, one must keep a few key points in
mind:
• the CUDA model organizes threads by a) threads blocks

in which synchronization is possible, b) a grid of blocks
with no possible synchronization between blocks.

• there is no way to know in what order the blocks are
to be scheduled during one single kernel execution.

• data must be kept in GPU memory, to reduce the over-
head due to copying between CPU and GPU memories.

• the total amount of threads running the same computa-
tion must be maximized.

• the number of execution branches inside a block should
be reduced as much as possible.

• global memory accesses should be coalescent, ie. mem-
ory accesses done by physically parallel threads (16 at
a time) must be consecutive and contained in a 128
Bytes range.

• shared memory is organized by 16 x 32 bits wide banks.
To avoid bank conflicts, each parallel thread (16 at a
time) must access a different bank.

All the above charasteristics make it always a quite
constrained problem to solve when designing a GPU code.
Moreover, a non suited code would probably run even slower
on GPU than on CPU due to the automatic serialization
which would be done at run time.

V. GPU IMPLEMENTATION

In the implementation described below, pre-computations
and proper segmentation are discussed separately. To keep
data in GPU memory, the whole computation is assigned to
the GPU. CPU still hosts:
• data reading from HDD
• data writing on HDD if needed
• main loops control (corresponding to lines 10 and 11

of Algorithm 2)
It must be noticed that controlling these loops is achieved

with only a very small amount of data being transferred
between host (CPU) and device (GPU), which does not
produce high overhead.
Morever, the structures described below need 20 Bytes per
pixel of the image to process (plus an offset of about

50 MByte). It defines the maximum image size we can
accept: approximately 150 M Pixels.

A. Pre-computations

To replace 2D sums by 1D sums, Chesnaud et al. [2] have
shown that the three matrices below should be computed:

C1(i, j) =

k=j∑
k=0

(1 + k)

Cz(i, j) =

k=j∑
k=0

z(i, k)

and

Cz2(i, j) =

k=j∑
k=0

z2(i, k)

Where z(i, k) is the gray level of pixel of coordinate (i, j),
so that C1, Cz and Cz2 are the same size as image I .

First, we chose not to generate C1(i, j), which requires
that values should be computed when needed, but saves
global memory and does not lead to any overhead. The
computation of Cz and Cz2 easily decomposes into series of
inclusive prefixsums [8]. However, by keeping the 1 thread
per pixel rule, as the total number of threads that can be run
in a grid cannot exceed 225 (Cf. [7]), slicing is necessary for
images exceeding a size threshold which can vary according
to the GPU model (e.g. 33 MPix for sm13 GPU, eg. C1060).
It’s quite easy to do, but it leads to a small overhead as the
process requires multiple calls to one kernel. Slicing can be
done in two ways:
• all slices are of the same size (balanced)
• slices fit the maximum size allowed by the GPU,

leaving one smaller slice at the end of the process (full-
sized).

The balanced slice option has proved to run faster.
For example: if a given image has 9000 lines and the GPU
can process up to 4000 lines at a time, it’s faster to run 3
times with 3000 lines rather than twice with 4000 and once
with 1000.

As the sums in Cz and Cz2 are row-wide, it is easy to
see that every block-wide sum will be needed before being
able to use it in the global sum. But as mentioned earlier,
the scheduling of blocks must be considered as random. So,
in order to ensure synchronizations, each row of the original
image is then treated by three different kernels:
• compute_blocks_prefixes().
• scan_blocksums().
• add_sums2prefixes().

Figures 3, 4 and 5 show relevant data structures for a given
row i of I . We assume that each thread block runs bs threads
in parallel and each row of Cz needs n blocks to cover its
L pixels.

one parallel prefixsum per block

in GPU global mem

in GPU shared mem
prefixsums

row i of the image

in GPU global memory

to GPU global memory to GPU global memoryto GPU global memory

z(i, 0) z(i, bs)

z(i, n.bs− 1)z(i, bs) z(i, bs+ 1) z(i, 2bs− 1)z(i, bs− 1)z(i, 0) z(i, 1) z(i, (n− 1).bs)

j=2bs−1∑
j=bs

z(i, j)
j=bs+1∑
j=bs

z(i, j)
j=n.bs−1∑
j=(n−1)bs

z(i, j)
j=bs−1∑
j=0

z(i, j) z(i, (n− 1).bs)

j=2bs−1∑
j=bs

z(i, j)
j=bs−1∑
j=0

z(i, j)
j=n.bs−1∑
j=(n−1)bs

z(i, j)

j=1∑
j=0

z(i, j)

block 0 block 1 block n− 1

block n− 1block 1block 0

vector V of block sums

Figure 3. compute_blocks_prefixes() details.

Figure 3 shows the details of the process for row i of the
original image I , already stored in GPU global memory.
Operands are first copied into GPU shared memory for
efficiency reasons. An inclusive prefixsum is then performed
inside each independant thread block. At this point, only
the first shared memory block contains the final values.
Its last element contains the sum of all elements in the
corresponding block of I . In order to obtain the right values
for the row i of Cz , every element value in the other blocks
must then be summed with an offset value. This offset value
is the sum of all element values in every corresponding
previous block of row i.

As the scheduling of blocks is fully unpredictable, the
necessary intermediate results have to be stored in GPU
global memory before exiting from kernel. Each element of
the prefixsums in GPU shared memory has been stored in
its corresponding position in Cz (GPU global mem), along
with the vector of block sums which will be passed later to
the next kernel scan_blocksums().

The kernel scan_blocksums() (Figure 4) only makes
an exclusive prefixsum on the vector of block sums described
above. The result is a vector containing, at index x, the value
to be added to every element of block x in each line of Cz .

This summing is done in shared memory by kernel
add_sums2prefixes() as described by Figure 5.

The values of Cz2 are obtained together with those of Cz

and in exactly the same way. For publishing reasons, figures
do not show the Cz2 part of structures.

With this implementation, speedups are quite significant
(Table I). Moreover, the larger the image, the higher the
speedup is, as the step-complexity of the sequential algo-
rithm is of O(N2) and O(N log(N)) for the parallel version.
Even higher speedups are achieved by adapting the code to
specific-size images, especially when the number of columns
is a power of 2. This avoids inactive threads in the grid, and
thus improves efficiency. However, since the use of 64-bit
sums is imposed by image sizes (up to 12000 pixel wide)
and 16-bit pixel coding, computations are made with a 2-

way bank conflict as sums are based on 64-bit words, thus
creating overhead.

B. Segment contributions
The choice made for this implementation has been to keep

the 1 thread per pixel rule for the main kernels. Of course,
some reduction stages need to override this principle and
will be pointed out.

As each of the Nn nodes of the contour Sn,l may move
to one of the eight neighbor positions as shown in Figure 6,
there is 16Nn segments whose contribution has to be esti-
mated. The best combination is then chosen to obtain Sn,l+1

(Figure 6). Segment contributions are computed in parallel
by kernel GPU_compute_segments_contrib().

The grid parameters for this kernel are determined accord-
ing to the size of the longest segment npixmax. If bsmax is
the maximum theoritical blocksize that a GPU can accept,
• the block size bs is taken as

– npixmax’s next power of two if
npixmax ∈ [33; bsmax]

– 32 if npixmax < 32
– bsmax if npixmax > 256

• the number of threads blocks assigned to each segment,
NTB = npixmax+bs−1

bs

Our implementation makes intensive use of shared memory
and does not allow the use of the maximum theoritical
blocksizes (512 for sm13, 1024 for sm20, see [9] and [7]).
Instead we set bssm13

max = 256 and bssm20
max = 512. Anyway,

testing has shown that most often, the best value is 256 for
both sm13 and sm20 GPU’s.

Then GPU_compute_segments_contrib() com-
putes in parallel:
• each pixel coordinates for all 16Nn segments. Since

the contour is only read in one direction, we have been
able to use a very simple parallel algorithm instead
of Bresenham’s. It is based on the slope k of each
segment: one pixel per row if |k| > 1, one pixel per
column otherwise.

parallel exclusive prefixsum

in global memory

in global memory

j=2bs−1∑
j=bs

z(i, j)
j=bs−1∑
j=0

z(i, j)

0

k=1∑
k=0

j=(k+1).bs−1∑
j=k.bs

z(i, j)
j=bs−1∑
j=0

z(i, j)

j=n.bs−1∑
j=(n−1)bs

z(i, j)

k=(n−1)∑
k=0

j=(k+1)bs−1∑
j=k.bs

z(i, j)

vector V of block sums

vector V

Figure 4. scan_blocksums() details.

in global memory

in global mem

in GPU global mem
prefixsums

0

k=1∑
k=0

j=(k+1).bs−1∑
j=k.bs

z(i, j)
j=bs−1∑
j=0

z(i, j)
k=(n−1)∑

k=0

j=(k+1)bs−1∑
j=k.bs

z(i, j)vector V

j=n.bs−1∑
j=(n−1)bs

z(i, j)

z(i, 0)

block n− 1block 1block 0row i of Cz

j=n.bs−1∑
j=0

z(i, j)
j=(n−1)bs∑

j=0

z(i, j)
j=2bs−1∑

j=0

z(i, j)
j=bs+1∑
j=0

z(i, j)
j=bs∑
j=0

z(i, j)
j=bs−1∑
j=0

z(i, j)
j=1∑
j=0

z(i, j)

z(i, 0) z(i, bs)
j=2bs−1∑
j=bs

z(i, j)
j=bs+1∑
j=bs

z(i, j)
j=bs−1∑
j=0

z(i, j) z(i, (n− 1).bs)
j=1∑
j=0

z(i, j)

block n− 1block 1block 0

Figure 5. add_sums2prefixes() details.

segment with 1 thread per row

segment with 1 thread per column

8 tests positions around node Pi
from Ti,0 to Ti,7 counterclockwise

node Pi−1

node Pi+1

Figure 6. Optimization of node locations using 8 position tests around
each node.

• each pixel contribution by reading the corresponding
values in the lookup tables.

• each thread-block sum of individual pixel contributions
by running a reduction stage for each block.

The top line of Figure 7 shows the base data structure
in GPU shared memory which is relative to one segment.
We concatenate the single segment structure as much as
necessary to create a large vector representing every pixel
of every test segment. As each segment has a different size
(most often different from any power of two), there is a
non-neglectable number of inactive threads scattered in the
whole structure. Two stages are processed separately: one
for all even nodes and another one for odd nodes, as shown
in the two bottom lines of Figure 7.

The process is entirely done in shared memory; only a
small amount of data needs to be stored in global memory
for each segment:
• the coordinates of its middle point, in order to be able

to add nodes easily if needed.
• the coordinates of its first and last two points, to

compute the slope at each end of the segment.
The five values above are part of the weighting coefficients
determination for each segment and node.

The GPU_sum_contribs() takes the blocks sums ob-

block 0 block 1

16 segments around one node

NTB blocks of bs threads for one segment
block NTB − 1

−−−−−→
Pi−1Ti,0

−−−−−→
Pi−1Ti,7

−−−−−→
Ti,0Pi+1

−−−−−→
Ti,7Pi+1

P2(Nn/2+Nn%2−1)P2P0

(Nn/2 +Nn%2) even nodes

P1 P3 P2(Nn/2−1)+1

(Nn/2) odd nodes

Figure 7. structure for segments contributions computation. Gray symbols help to locate inactive threads as opposed to black ones that figure active
threads.

tained by GPU_compute_segments_contrib() and
computes a second stage parallel summing to provide the
16Nn segment contributions.

C. Segments with a slope k such as |k| ≤ 1

Such a segment is treated with 1 thread per column and
consequently, it often has more than one pixel per row as
shown by Figure 8. In an image row, consecutive pixels
which belong to the target define an interval which can
only have one low and one high ends. That’s why, on
each row, we choose to consider only the contributions
of the innermost pixels. This selection is also done inside
GPU_compute_segments_contrib() when reading
the lookup tables for each pixel contribution. We simply
set a null contribution for pixels that need to be ignored.

high end pixellow end pixel

pixels with null contributions pixels with non−null contributions

Outside the contour

Inside the contour

Figure 8. zoom on part a of segment with |k| < 1, at pixel level.

D. Parameters estimation

A GPU_compute_GL() kernel computes in parallel:
• every 8Nn vector of parameters values corresponding

to each possible next state of the contour. Summing
is done in shared memory but relevant data for these
operations are stored in global memory.

• every associated pseudo likelihood value.
• every node substitution when better GL have been

found and if it does not lead to segments crossing.

E. End of segmentation

Segmentation is considered achieved out when no other
node can be added to the contour (Algorithm 3). A very
simple GPU kernel adds every possible node and returns
the number it added.

Algorithm 3: Parralel GPU algorithm: outlines.
<<<...>>> indicates a GPU kernel parallel process.

1: load images;
2: transfer image from CPU to GPU;
3: <<<compute the 2 cumulated images>>>;
4: <<<initialize the contour>>>;
5: repeat /* iteration level */
6: repeat /* step level */
7: <<<find best neighbor contour>>>;
8: <<<adjust node’s positions>>>;
9: transfer the number of moves achieved from

GPU memory to CPU memory.
10: until no more node can be moved;
11: <<<Add nodes>>>;
12: transfert the number of nodes added from GPU

memory to CPU memory.
13: until no more node can be added;

VI. SPEEDUPS

Results are given in Table I. CPU timings were measured
on an Intel Xeon E5530-2.4GHz with 12Go RAM (LIFC
cluster). GPU timings were obtained on a C2050 GPU with
3GB RAM (adonis-11.grenoble.grid5000.fr).
Execution times reported are means on ten executions. The
image of figure 1a (scaled down for printing reasons) is
based on a real noisy image (800 x 800), 16-bit gray level.
Contrast has been enhanced for better viewing; its various

CPU GPU Speedup
Image 15MP total 0.51 s 0.06 s x8.5

pre-comp. 0.13 s 0.02 s x6.5
segment. 0.46 s 0.04 s x11.5

Image 100MP total 4.08 s 0.59 s x6.9
pre-comp. 0.91 s 0.13 s x6.9

segment. 3.17 s 0.46 s x6.9
Image 150Mp total 5.7 s 0.79 s x7.2

pre-comp. 1.4 s 0.20 s x7.0
segment. 4.3 s 0.59 s x7.3

Table I
GPU (C2050) VS CPU TIMINGS.

sizes have been obtained by interpolation and addition of
gaussian noise.

We separately give the timings of pre-computations as
they are a very general purpose piece of code. Segmentations
have been performed with strictly the same parameters
(initial shape, threshold length). The neighborhood distance
for the first iteration is 32 pixels. It has a slight influence
on the time process, but it leads to similar speedups values
of approximately 7 times faster than CPU.

Though it does not appear in Table I, we observed that
during segmentation stage, higher speedups are obtained in
the very first iterations, when segments are made of a lot of
pixels, leading to a higher parallelism ratio.
Several parameters prevent from achieving higher speedups:
• accesses in the lookup tables in global memory cannot

be coalescent. It would imply that the pixel contribu-
tions of a segment are stored in consecutive spaces
in Cz and Cz2 . This is only the case for horizontal
segments.

• the use of 64-bit words for computations in shared
memory often leads to 2-way bank conflicts.

• the level of parallelism is not so high, ie. the total num-
ber of pixel is not large enough to achieve impressive
speedups. For example, on C2050 GPU, a grid can run
about 66 million of threads, but a contour in a 10000 x
10000 image would be less than 0.1 million pixel long.

VII. CONCLUSION

The algorithm we have focused on is not easy to adapt
for high speedups on GPGPU, though we managed to make
it work quite faster than on CPU. The main drawback is
clearly its relative low level of parallelism. Nevertheless, we
proposed different kernels that allowed us to take advantage
of the computation power of GPUs. In future works, we
plan to try and manage to benefit from larger computing
grids of thread blocks. Among the possible solutions, we
plan to work on:
• slicing the image and processing the parts in parallel.

This is made possible since sm20 GPU provide multi
kernel capabilities.

• slicing the image and processing the parts on two
different GPUs, hosted by the same CPU.

To extend the scope of this work beyond our present
hypothesis (based on single target segmentation), we are also
going to investigate achieving speedups in multiple target
segmentation of large images. This might be useful in a
wide range of applications.

REFERENCES

[1] M. Kass, A. P. Witkin, and D. Terzopoulos, “Snakes: Active
contour models,” International Journal of Computer Vision,
vol. 1, no. 4, pp. 321–331, 1988.

[2] C. Chesnaud, P. Réfrégier, and V. Boulet, “Statistical region
snake-based segmentation adapted to different physical noise
models,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 21,
no. 11, pp. 1145–1157, 1999.

[3] C. Bryan, S. Bor-Yiing, S. Narayanan, Lee, Yunsup, M. Mark,
and K. Kurt, “Efficient, high-quality image contour detection,”
International Conference on Computer Vision, pp. 2381–2388,
2009.

[4] T. Schoenemann and D. Cremers, “A combinatorial solution for
model-based image segmentation and real-time tracking,” IEEE
Transactions on Pattern Analysis and Machine Intelligence,
vol. 32, pp. 1153–1164, 2010.

[5] E. Dipl.-Inf. Kienel and G. Prof. Dr. Brunnett,
“Gpu-accelerated contour extraction on large images
using snakes,” 2009. [Online]. Available: http://archiv.tu-
chemnitz.de/pub/2009/0035

[6] C. Kauffmann and N. Piche, “Cellular automaton for ultra-fast
watershed transform on gpu,” in ICPR, 2008, pp. 1–4.

[7] NVIDIA CUDA C Programming Guide v3.1.1, NVIDIA Cor-
poration, 7 2010.

[8] M. Harris, S. Sengupta, and J. D. Owens, Gpu gems 3, 1st ed.
Addison-Wesley Professional, 2007, ch. 39 - Parallel Prefix
Sum with CUDA.

[9] NVIDIA Fermi Tuning Guide, NVIDIA Corporation, 7 2010.

