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Abstract In this study, we propose to address the issue
of image denoising by means of a GPU-based filter, able
to achieve high-speed processing by taking advantage of
the parallel computation capabilities of modern GPUs.
Our approach is based on the level sets theory first in-
troduced by [10] in 1975 but little implemented because
of its high computation costs. What we actually do is try
to guess the best isoline shapes inside the noisy image.
At first, our method involved the polyline modelling of
isolines; then we found an optimization heuristics which
very closely fits the capabilities of GPUs. So far, though
our proposed hybrid PI-PD filter has not achieved the
best denoising levels, it is nonetheless able to process a
512x512 image in about 11 ms.

1 Introduction

Denoising has been a much studied research issue since
electronic transmission was first used. The wide range of
applications that involve denoising makes it uneasy to
propose a universal filtering method. Among them, dig-
ital image processing is a major field of interest as the
number of digital devices able to take pictures or make
movies is growing fast and shooting is rarely done in
optimal conditions. Moreover, the increase in pixel den-
sity of the CCD or CMOS sensors used to measure light
intensity leads to higher noise effects and imposes high
output flow rates to the various processing algorithms.

In addition, it is difficult to quantify the quality of
an image processing algorithm, as visual perception is
subject to high variation from one human to another. So
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far, the advent of GPUs has brought high speedups to a
lot of algorithms, and many researchers and developpers
have successfully adressed the issue of implementing ex-
isting algorithms on such devices. For example in [11],[7]
and [15], authors managed to design quite fast median
filters. Bilateral filtering has also been successfully pro-
posed in [17]. Still, most high quality algorithms, like NL-
means [8] or BM3D [9] make use of non-local similarities
and/or frequency domain transforms. However, speedups
achieved by their current GPU implementations, though
quite sigificant (as shown for example with NL-means in
[13]), do not come near those achieved by local meth-
ods such as gaussian, median or neighborhood filters, as
they have not originally been designed against GPU ar-
chitecture. In order to fully benefit from the capabilities
of GPUs, it is important that the approach to designing
algorithms be more hardware-oriented, keeping in mind,
from the very beginning, the intrinsic constraints of the
device which is actually going to run those algorithms.
Consequently, this often results in unusual options and
even apparently sub-optimal solutions, but the consider-
able speed benefits obtained would possibly make it at
least a good compromise or even the only current way to
real-time high-definition image processing.

2 Contribution

As early as 1975 [10], it was found that, under the con-
ditions mentioned in section 5, an image can be decom-
posed into a set of level lines. Accordingly, real-life im-
ages fulfill the above conditions and since then, with
the increase of computing capabilities, researchers have
succeded in implementing such level-lines based algo-
rithms as in [6] and [12]. A few years ago, in [3], au-
thors proposed an original method which significantly
reduces speckle noise inside coherent images, using the
level lines in the image to constrain the minimization
process. Those level lines are actually iso-gray-level lines,
which are called isolines. In [3], isolines consist in neigh-
borhoods of polyline shapes determined by maximum
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likelihood optimization. This method proved not only
to bring good enhancement but also to preserve edges
between regions. Nevertheless, the costs in computation
time, though not prohibitive, did not allow real-time im-
age processing; as an example, the authors of [3] man-
aged to process an almost 2Mpixel image within a minute
on an old PIII-1GHz.

Our work started by designing a set of GPU imple-
mentations with various optimization heuristics, in order
to find out which tracks could be followed towards mini-
mizing loss in quality and preserve admissible execution
times. Those algorithms have been tested with reference
images taken from [1] for which various processing re-
sults have been published. Some of the more interesting
ones are listed and compared in [4]. Statistical observa-
tions (to be detailed below) made on the output images
produced by the method proposed in [3], led us to pro-
pose a very fast and simple parallel denoising method
which gives good results in terms of average gray-level
error, but also avoids the blurring of edges.

On the basis of the BM3D timings listed in [9] and
with our own measurements, our proposed GPU-based
filter runs around 350 times faster and thus is able to pro-
cess high definition images at over 16fps. It also achieves
good denoising quality.

3 Plan

In the following, section 4 briefly focuses on recent Nvidia
GPU characteristics. Section 5 will introduce the theory
and notations used to define isolines. Then, in section 6,
we will describe the two isoline based models that led to
the final hybrid model, while section 7 details the par-
allel implementation of the proposed algorithm. Finally,
we present our results in section 8 before drawing our
conclusions and outlining our future works in section 9.

4 NVidia’s GPU architecture

GPUs are multi-core, multi-threaded processors, opti-
mized for highly parallel computation. Their design fo-
cuses on a Single Instruction Multiple Threads (SIMT)
model that devotes more transistors to data process-
ing rather than data-caching and flow control (see [2]
for more details). For example, a C2070 card features
6 GBytes global memory and a total of 448 cores bundled
in several Streaming Multiprocessors (SM). An amount
of shared memory, much faster than global memory, is
avalaible on each SM (up to 48 KB for a C20xx card)

Writing efficient code for such architectures is not
obvious, as re-serialization must be avoided as much as
possible. Thus, code design requires one pays attention
to a number of points, among which:

– the CUDA model organizes threads by a) thread blocks
in which synchronization is possible, b) a grid of blocks
with no possible synchronization between them.

– there is no way to know how blocks are scheduled
during one single kernel execution.

– data must be kept in GPU memory, to reduce the
overhead generated by copying between CPU and
GPU.

– the total amount of threads running the same com-
putation must be as large as possible.

– the number of execution branches inside one block
should be as small as possible.

– global memory accesses should be coalescent, i.e. mem-
ory accesses done by physically parallel threads (2 x
16 at a time) must be consecutive and contained in
a 128 Bytes range.

– shared memory is organized in 32x32 bit-wide banks.
To avoid bank conflicts, each parallel thread (2 x 16
at a time) must access a different bank.

All the above characteristics always make designing
efficient GPU code all the more constraining as non-
suited code would probably run even slower on GPU than
on CPU.

5 Isolines

In the following, let I be the reference noiseless image
(assuming we have one), I ′ the noisy acquired image cor-
rupted by Independent and Identically Distributed (IID)
additive white gaussian noise of zero mean value and

standard deviation σ. Let Î be the denoised image. Each
pixel of I ′ of coordinates (i, j) has its own gray level
z(i, j).

As introduced above and since most common images
are continuous and contain few edges, they can be de-
composed into a set of constant gray level lines called
isolines. Then our goal is to find, for each single pixel of
a noisy image, the isoline it belongs to. The generalized
likelihood criterion (GL) is used to select the best isoline
among all the considered ones, all of which must have
the same number of pixels in order to be compared.

5.1 Fixed-length isolines

For each pixel (i, j) of the corrupted image, we look for
the gray level of the isoline it belongs to, inside a rect-
angular window ω centered on (i, j). Inside ω, let Sn be
the isoline part which the center pixel belongs to. Sn is
a set of n pixel positions (iq, jq) (q ∈ [0;n[).
The gray levels z along Sn follow a gaussian probability
density function whose parameters µSn (mean value of
isoline part) and σ (standard deviation brought by gaus-
sian noise ) are unknown.
Let Sn be defined by ω = Sn ∪ Sn.
For each pixel, the mean values µij of gray levels z over
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Sn are unknown and supposed independant .
Let Z be the gray levels of pixels in ω and {µij}Sn the

mean values of pixels in Sn. The likelihood is given by:

P
[
Z|Sn, µSn , {µij}Sn , σ

]
When separating contributions from regions Sn and Sn,
it becomes:∏
(i,j)∈Sn

P [z(i, j)|µSn , σ].
∏

(i,j)∈Sn
P
[
z(i, j)| {µij}Sn , σ

]
(1)

The goal is then to estimate the value of the above ex-
pression, in order to find the boundaries of Sn that max-
imize expression (1).
Let us consider that, on Sn, the values z(i, j) are the
likelihood estimations µ̂ij for µij . The second term of
expression (1) becomes:∏
(i,j)∈Sn

P
[
z(i, j)| {µ̂ij}Sn , σ

]
= 1 (2)

which leads to the generalized likelihood expression:∏
(i,j)∈Sn

P [z(i, j)|µSn , σ] (3)

As we know the probability density function on Sn, (3)
can then be developped as∏
(i,j)∈Sn

1√
2πσ2

e−
(z(i,j)−µSn )

2

2σ2 (4)

The log-likelihood is then given by:

−n
2
log (2π)− n

2
log
(
σ2
)
− n

2
(5)

inside which the vector of parameters (µSn , σ) is deter-
mined by maximum likelihood estimation

µ̂Sn =
1

n

∑
(i,j)∈Sn

z(i, j)

σ̂2 =
1

n

∑
(i,j)∈Sn

(z(i, j)− µ̂Sn)
2

The selection of the best isoline is done by searching
which one maximizes the expression of equation (5).

5.2 Lengthenable isolines

Searching for larger isolines should lead to better filtering
as a larger number of pixels would be involved. However,
processing all possible isolines starting from each pixel
would be too costly in computing time, even in the case
of a small GPU-processed 512x512 pixel image. There-
fore, we chose to build large isolines inside an iterative
process including a mandatory validation stage between
each lengthening iteration, so as to reduce the number

Fig. 1 Determination and lengthening of an isoline: The gray
level z of each pixel is seen as an elevation value. Sn is the n
pixel length isoline for pixel of coordinates (i, j). The elonga-
tion of Sn by Sp (p pixel length) is submitted to the GLRT
condition (see eq. (8)).

of pixel combinations to be examined and keep the es-
timation of deviation σ within a satisfactory range of
values.

Let Sn be a previously selected isoline part and Sp

connected to Sn in such a way that Sp could be seen as
an addition to Sn so as to define a possible valid isoline
Sn+p. Figure 1 illustrates this situation with a very sim-
ple example image. In this figure, the gray level of each
pixel is used as its corresponding height (z) in order to
visualize isolines easily. Some of the orthogonal isoline
projections have been drawn in dotted line in the (i, j)
plane. Both labeled parts Sp and Sn are represented in
the (i, j) plane and in the 3D associated plot.

In order to decide whether Sn+p can be considered as
an actual isoline, we compare the log-likelihood of both
hypothesis below by using GLRT (Generalized Likeli-
hood Ratio Test):

First, assuming that Sn+p is an isoline, the gray levels
of its pixels share the same mean value µn+p. According
to (5), its log-likelihood is

− (n+ p)

2
(log (2π) + 1)− (n+ p)

2
log
(
σ̂1

2
)

(6)

where σ̂1 is the estimation of the standard deviation
along Sn.

Second, considering Sn and Sp as two separate iso-
line parts connected together, the gray levels of their
pixels have two different mean values µn and µp. The
log-likelihood is the sum of both log-likelihoods, given
by

− (n+ p)

2
(log (2π) + 1)− n

2
log
(
σ̂2

2
)
− p

2
log
(
σ̂2

2
)

(7)

where σ̂2 is the estimation of the standard deviation
along Sn and Sp.

The difference between (6) and (7) leads to the ex-
pression of GLRT (Sn+p, Sn, Sp, Tmax):

Tmax − (n+ p).
[
log
(
σ̂1

2
)
− log

(
σ̂2

2
)]

(8)

The decision to validate lengthening from Sn to Sn+p

depends whether GLRT (Sn+p, Sn, Sp, Tmax) is higher or
lower than 0. Value Tmax is the GLRT threshold.
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6 Isoline models

The most obvious model considers isolines as polylines.
Each isoline can then be curved by allowing a direction
change at the end of each segment; we shall call such
isolines poly-isolines.

In order to keep the number of candidate isolines
within reasonable range, we chose to build them by com-
binating segments described by simple pre-computed pat-
terns. Each pattern pl,d describes a segment of length l
and direction d. For one given l value, all pl,d patterns
are grouped into a matrix denoted Pl. Figure 8 shows an
example of such a pattern matrix for l = 5.

To fit the GPU-specific architecture, we define reg-
ularly distributed D primary directions (D = 32 in our
examples).

6.1 Poly-isolines with limited deviation angle (PI-LD)

At one stage we implemented an algorithm parsing the
tree of all possible polyline configurations, but the pro-
cess proved far too slow regarding our goal, even on GPU,
because of the amount of memory involved (and conse-
quent memory accesses) and because of the necessary re-
duction stage for which GPU efficiency is not maximum.
So we focused on a variant inspired by [3] in which the
selected direction of the next segment depends on the
whole of the previously built and validated poly-isoline.

Let us consider a poly-isoline Sn under construction,
starting from pixel (i, j) and made of K validated seg-
ments sk (k ∈ [1;K]) of length l, each of them having its
own direction dk. The coordinates of the ending pixel of
each segment sk are denoted (ik, jk). Both of the follow-
ing sums

Cx (Z(Sn)) =
∑

(i,j)∈Sn
z(i, j) (9)

and Cx2 (Z(Sn)) =
∑

(i,j)∈Sn
z(i, j)2 (10)

have been obtained during the previous lengthening steps.
Let us examine now how to decide wether to add a

new segment to Sn or to stop the lenghtening process.
The main idea is to apply each pattern pl,d to the ending
pixel (ik, jk), on the condition that its direction is con-
tained within the limits of maximum deviation ∆dmax.
Maximum deviation ∆dmax prevents poly-isolines from
beeing of circular shape (or backward-oriented) which
would possibly generate supplementary artefacts in the
output image. Another of its benefits is to reduce the
number of combinations to be evaluated.

For each allowed pattern, GLRT is performed in or-
der to decide if the corresponding segment could likely
be added to the end of the poly-isoline Sn. If none is
validated by GLRT, the poly-isoline Sn is stopped.

If at least one segment has been accepted by GLRT,
the one that leads to the maximum likelihood (ML) value

of the lengthened poly-isoline Sn+l is selected and inte-
grated to Sn+l as sK+1.

In order to avoid critical situations where the first
selected segment would not share the primary direction
of the actual poly-isoline, no selection is performed on
the level of the first segment; D poly-isolines are kept and
submitted to the lengthening process. To ensure isotropy,
each of them shares the direction of one pattern pl,d (d ∈
[0;D]).

Eventually, the poly-isoline with the maximum like-
lihood value is selected among the longest ones.

Figure 2 illustrates one stage of the lengthening pro-
cess with the example of a two-segment poly-isoline at
the beginning of stage (l = 5 and ∆dmax = 2).

(a) Isoline with two val-
idated segments s1 and
s2.

(b) First evaluated seg-
ment, corresponding to
pattern p5,0.

(c) Second evaluated seg-
ment, corresponding to
pattern p5,1.

(d) Third evaluated seg-
ment, corresponding to
pattern p5,2.

(e) Fourth evaluated seg-
ment, corresponding to
pattern p5,3.

(f) Fifth evaluated seg-
ment, corresponding to
pattern p5,4.

Fig. 2 Example of lengthening process starting with a two-
segment poly-isoline (l = 5, ∆dmax = 2). The initial situation
is shown in 2a, while 2b to 2f represent the successive can-
didate segments. The direction index of the last validated
segment is d2 = 2 (2a). It implies that direction indexes al-
lowed for the third segment range from d2 − ∆dmax = 0
to d2 + ∆dmax = 4 (2b to 2f). The lengthening of the
poly-isoline is accepted if at least one segment has a posi-
tive GLRT. If there are several, the one which minimizes the
standard deviation of the whole poly-isoline is selected.
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6.2 Poly-isolines with precomputed directions (PI-PD)

Though much faster, the PI-LD-based filter may be con-
sidered a bit weak compared to state-of-the-art filters like
BM3D family algorithms [9]. Furthermore, we saw that
this way of building poly-isolines requires the alternate
use of two different types of validation at each lengthen-
ing stage: GLRT and maximum likelihood minimization.
In order to be performed, each of them generates numer-
ous branches during kernel execution, which does not fit
GPU architecture well and leads to execution times that
we hoped would be more impressive.

Within the PI-LD model, at each pixel (i, j), as no
selection is done at the first stage, D poly-isolines are
computed and kept as candidate though, obviously, only
one follows the actual isoline at (i, j). So, if we assume
we can achieve a robust determination of the direction
at any given pixel of this isoline, it becomes unneces-
sary to perform the selection at each lenghtening step.
Thus, at each pixel (i, j), only the first segment has to be
determined in order to obtain the local direction of the
isoline. This leads to an important reduction of the work
complexity: the above PI-LD model needs to evaluate

D. (2.∆dmax + 1)
K−1

segments at each pixel position,
while only D.K evaluations are needed in the second
case. For example, with a maximum of K = 5 segments
and a maximum deviation of ∆dmax = 2, the PI-LD
needs to evaluate up to 20000 segments per pixel where
only 160 should be enough.

On the basis of these observations, we propose a new
model that we shall call PI-PD, that completely sepa-
rates the validation stages performed in the PI-LD model
implementation mentioned above:

A first computation stage selects the best first seg-
ment s1 starting at each pixel (i, j) of the input image.
Its direction index d1(i, j) is then stored in a reference
matrix denoted IΘ; sums Cx and Cx2 along s1(i, j) are
also computed and stored in a dedicated matrix IΣ . It
can be noticed that this selection method of s1 segments
is a degraded version of PI-LD constrained by K = 1.

A second stage manages the now independant length-
ening process. For one given state of a poly-isoline where
the last added segment has been sK , the pattern whose
direction index is given by d = IΘ(iK , jK) defines the
only segment to be evaluated. Both corresponding sums
Cx and Cx2 are read from matrix IΣ and used in GLRT
evaluation. The last point is to prevent poly-isolines from
turning back.

Figure 3 details this process, starting from the same
initial state as in figure 2 with the noticeable difference
that no deviation limit is needed.

Thus, as introduced above, work complexity is con-
siderably reduced, as each pattern is only applied once
at one given pixel (i, j), and associated values are com-
puted only once; they are re-used every time one poly-
isoline’s segment ends at pixel (i, j). Also, this fits GPU
constraints better, as it avoids multiple branches during

kernel execution. It remains that, the building of poly-
isolines is done without global likelihood optimization.

Eventually, the model has been improved by adding
to it the ability to thicken poly-isolines from one pixel
up to three which allows to achieve higher PSNR val-
ues by increasing the number of pixels of poly-isolines in
addition to the lengthening process. This may apply to
large images which do not contain small relevant details,
as it may blur small significant details or objects present
in the noisy image. Still, this feature makes PI-PD more
versatile than our reference BM3D, which has prohibitive
computation times when processing large images (over 5
minutes for a 4096x4096 pixel image) and thus should
require a slicing stage prior to processing them, causing
some overhead.

(a) Poly-isoline
with two vali-
dated segments.

(b) Next direction is read from ele-
ment (i2, j2) of IΘ.

(c) Pattern pl,d3 is then ap-
plied at (i2, j2) and GLRT
is performed. Both sums
needed to perform GLRT are
read from element (i2, j2) of
IΣ .

(d) If accepted by
GLRT, segment s3
is added to poly-
isoline.

Fig. 3 Example of PI-PD lengthening process starting with
a two-segment poly-isoline (l = 5). The initial situation is
represented in 3a, while 3a to 3d represent the successive
processing steps. The end pixel of the last validated segment
is (i2, j2) (3a). Reference matrices IΘ and IΣ provide the
values needed to select the pattern to be applied on (i2, j2)
(3b and 3c). GLRT is performed to validated lengthening or
not. This process goes on until one submitted segment does
not comply with GLRT.

6.3 Hybrid PI-PD

As the determination of each segment’s direction only
involves a few pixels, the PI-PD model may not be robust
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enough in regions where the surface associated with Z
has a low local slope value regarding power of noise σ2.
We shall call those regions Low Slope Regions (LSR).
Figure 4 shows this lack of robustness with an example of
two drawings of additive white gaussian noise applied on
the same reference image (Figure 6). Within this image,
we focused on a small 11x11 pixel window containing two
LSR with one sharp edge between them.

Figures 4d and 4e show that the directions computed
by PI-PD are identical from one drawing to the other
near the edge (lines 5-7), while they vary in LSR (lines
1-4, 8-11).

(a) Reference image

(b) Image corrupted by
random drawing n◦1

(c) Image corrupted by
random drawing n◦2

(d) Isoline directions for
random drawing n◦1

(e) Isoline directions for
random drawing n◦2

Fig. 4 Zoom on a small square window of the airplane image.
4a reproduce the zoom on the window, taken from the refer-
ence image of Figure 6. 4b, 4c and 4a and are 3D views where
each bar represents a pixel whose gray-level corresponds to
the height of the bar. Figures 4d and 4e are 2D top views of
the window. The chosen window shows an edge between two
regions of low slope. The images 4b and 4c are corrupted with
two different random drawings of the same additive white
gaussian noise (AWGN) of power σ2 and mean value 0. 4d
and 4e show, for each pixel of the window, the direction of
the isoline found by PI-PD. In regions of low slope (the two
regions at the top and the bottom), the determination of the
direction is not robust. But near the edge, directions do not
vary from one drawing to another.

Within such regions, our speed goals forbid us to com-
pute isoline directions with the PI-LD model, more ro-
bust but far too slow. Instead we propose a fast solution
which implies designing an edge detector whose principle
is to re-use the segment patterns defined in section 6 and
to combine them by pairs in order to detect any possible
LSR around the center pixel. If a LSR is detected, the
output gray-level value is the average value computed on
the current square window, otherwise, the PI-PD output
value is used.

In order to further simplify computation, only the
patterns that do not share any pixel are used. These
patterns have a direction which is a multiple of 45◦.

Each base direction (Θi) and its opposite (Θi+π) [2π]
define a line that separates the square window in two
regions (top and and bottom regions, denoted T and
B). We assume that segments on the limit belong to the
T region which includes pixels of orientation from Θi
to Θi + π. This region comprises three more segments
of directions (Θi + π

4 ), (Θi + 2π
4 ) and (Θi + 3π

4 ). The
other region (B) only includes three segments of direc-
tions (Θi + 5π

4 ), (Θi + 6π
4 ) and (Θi + 7π

4 ).

Figure 5 illustrates this organization for Θi = Θ4 =
45◦. Each bar represents a pixel in the detector’s window.
Pixels with null height are not involved in the GLRT.
Pixels represented by higher bars define the T region and
those represented by shorter bars define the B region.

Fig. 5 Edge detector. 3D view representing an example
square 11x11 pixel window (l = 5) used in the edge detector
for Θ4 = 45◦ around a center pixel colored in black. Each
pixel is represented by a bar. Bars of height value 0 are for
pixels that are not involved in the detector. Top region is de-
fined by five pattern segments and includes the center pixel.
Bottomp region only includes three pattern segments. The
different height values are meant to distinguish between each
of the three different sets of pixels and their role.

For each Θi, one GLRT is performed in order to de-
cide whether the two regions T and B defined above are
likely to be seen as a single region or as two different
ones, separated by an edge as shown in figure 5. The
center pixel is located on the edge. Equations (6), (7)
and (8) lead to a similar GLRT expression:

T2max − (8.l + 1).
[
log
(
σ̂3

2
)
− log

(
σ̂4

2
)]

(11)
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where σ3 is the standard deviation considering that the
two regions are likely to define a single one and σ4 the
standard deviation if an edge is more likely to separate
the two regions. T2max is the decision threshold. With
equation (11), a negative result leads to an edge de-
tection, oriented towards direction Θi. When GLRT is
known for each Θi, we apply the following hybridation
policy:

a) more than one negative GLRT: the PI-PD output
value is used.

b) only one negative GLRT: the center pixel is likely
to be on a well-defined edge, and only the region it
belongs to is considered. The average value of its pixel
gray levels is then used.

c) no negative GLRT: the window around the center
pixel is likely to be a LSR. The average value on
the whole square window is used (11x11 pixels in the
example of Figure 5).

(a) Reference noiseless
airplane image

(b) Location of the ex-
ample window in the ref-
erence image.

Fig. 6 Location of the example window inside the reference
image. Figure 6a shows the whole reference image and 6b
zooms on the part where the example 11x11 pixel window is.

It must be noticed that point b) has been introduced
in order to achieve smoother transitions between regions
to which PI-PD is applied and those in which the plain
average value is used. Figure 7 shows an example of such
a classification achieved by the edge detector. The de-
tector has been applied on the top noisy airplane image
with a GLRT threshold value T2max = 2. Black pixels
represent pixel classified as on an edge, while white ones
are those which belong to LSR.

7 Hybrid PI-PD filter Implementation: details

All implementation details that will be given here are
relative to the proposed PI-PD models and Nvidia c©

GPU devices.

7.1 Segment patterns

The first kernel to be run is kernel genPaths() which
generates matrix Pl. Its elements (∆i;∆j) are the rela-

(a) Noisy airplane image (b) Pixel classification
performed by the edge
detector.

Fig. 7 Pixel classification inside the noisy image. Figure 7a
shows the noisy input image and 7b reproduces the output
classification of pixels, as a black and white image, obtained
with threshold value T2max = 2. Black pixels are supposed
to be near an edge, while white pixels belong to Low Slope
Regions.

tive coordinates of the pixels which define segment pat-
terns pl,d. The dimensions of matrix Pl are D rows × l
columns. To fit GPU architecture as closely as possible,
we chose D = 32 patterns. Each segment sk of a poly-
isoline can then be seen as a pattern pl,d applied on the
starting pixel (i, j) of this segment, denoted pl,d(i, j).

The example in figure 8 shows the first quarter of P5

and the corresponding eight discrete segment patterns in
the first quadrant. The three remaining quarters of the
matrix are easily deduced by applying successive rota-
tions of angle π

2 to the above elements.

P5 =



(0, 1) (0, 2) (0, 3) (0, 4) (0, 5)

(0, 1) (0, 2) (−1, 3) (−1, 4) (−1, 5)

(0, 1) (−1, 2) (−1, 3) (−2, 4) (−2, 5)

(−1, 1) (−1, 2) (−2, 3) (−3, 4) (−3, 5)

(−1, 1) (−2, 2) (−3, 3) (−4, 4) (−5, 5)

(−1, 1) (−2, 1) (−3, 2) (−4, 3) (−5, 3)

(−1, 0) (−2, 1) (−3, 1) (−4, 2) (−5, 2)

(−1, 0) (−2, 0) (−3, 1) (−4, 1) (−5, 1)

. . . . . . . . . . . . . . .


Fig. 8 Top: example segment patterns p5,d for d ∈ [0; 7];
the black pixel represents the center pixel (i, j), which does
not belong to the pattern. The gray ones define the actual
pattern segments. Bottom: the first 8 lines of corresponding
matrix P5 whose elements are the positions of segment pixels
with respect to the center pixel.
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7.2 Generation of reference matrices IΣ and IΘ

In order to generate both matrices, a GPU kernel named
kernel precomp() computes, in parallel for each pixel
(i, j):

– the direction δ of the most likely segment s1 = pl,δ(i, j)
among the D possible ones. This value is stored in
matrix IΘ at position (i, j).

– values Cx(s1) and Cx2(s1) defined in equations (9)
and (10). This vector of values is stored in matrix IΣ
at position (i, j).

In order to reduce processing time, the input image
is first copied into texture memory (see algorithm 1 for
initializations and memory transfer details), thus taking
advantage of the 2D optimized caching mechanism.

This kernel follows the one thread per pixel rule. Con-
sequently, each value of Pl has to be accessed by every
thread of a block. That led us to load it from texture
memory first, then copy it into all shared memory blocks.
This has proved to be the fastest scheme.

Algorithm 2 summarizes the computations achieved
by kernel precomp(). Vector (Cx, Cx2) stores the values
of Cx(s1) and Cx2(s1) associated with the current tested
pattern. Vector (Cx−best, Cx2−best) stores the values of
Cx(s1) and Cx2(s1) associated with the best previously
tested pattern.

In the same manner, σ and σbest are deviation values
for current and best tested patterns.

The selection of the best pattern is driven by the
value of the standard deviation of candidate isolines.
Lines 2 and 3 compute both sums for the first pattern
to be evaluated. Line 4 computes its standard deviation.
Then, lines 5 to 14 loop on each pattern and keep values
associated with the best pattern found. These values are
eventually stored in matrices IΘ and IΣ on lines 16 and
17.

Algorithm 1: Initializations in GPU memory

1: l← step size;
2: D ← number of primary directions;
3: In ← noisy image;
4: Intex ← In; /* copy to texture mem. */
5: Pl ← kernel genPaths ; /* pattern matrix */
6: Pltex ← Pl; /* copy to texture mem. */

7: Tmax ← GLRT threshold (lengthening);
8: T2max ← GLRT threshold (edge detection);

7.3 PI-PD lengthening process: kernel PIPD()

This parallel kernel is run in order to obtain the image
of the isolines. It is detailed in algorithm 3, (see section
6.2 for process description).

Algorithm 2: generation of reference matrices,
kernel kernel precomp()

1: foreach pixel (i, j) do /* in parallel */

2: Cx−best ←
∑

(y,x)∈pl,0(i,j)

Intex(i+ y, j + x) ;

3: Cx2−best ←
∑

(y,x)∈pl,0(i,j)

I2ntex(i+ y, j + x) ;

4: σbest ← standard deviation along pl,0(i, j) ;
/* loop on each pattern */

5: foreach d ∈ [1;D − 1] do

6: Cx ←
∑

(y,x)∈pl,d(i,j)

Intex(i+ y, j + x);

7: Cx2 ←
∑

(y,x)∈pl,d(i,j)

I2ntex(i+ y, j + x);

8: σ ← standard deviation along pl,d(i, j);
9: if σd < σbest then /* keep the best */

10: Cx−best ← Cx ;
11: Cx2−best ← Cx2 ;
12: Θbest ← d ;
13: end
14: end
15: IΣ(i, j)← [Cx−best, Cx2−best] ; /* stores */

16: IΘ(i, j)← Θbest ; /* in matrices */
17: end

Lines from 2 to 11 perform allocations for the first
lengthening to evaluate. More precisely, (i1, j1) repre-
sents the starting pixel of the current segment; (i2, j2)
is both its ending pixel and the starting pixel of the
next segment; d1 and d2 are their directions, read from
precomputed matrix IΘ. C1

x and C1
x2 are the gray-level

sums along the current poly-isoline; C2
x and C2

x2 are the
gray-level sums of the candidate segment. The current
poly-isoline ends at (i1, j1) and is made of l1 pixels (al-
ready accepted segments); its standard deviation is σ1.
The loop extending from lines 12 to 21 performs the allo-
cations needed to proceed one segment forward, as long
as GLRT is true. If the lengthening has been accepted,
the length of the poly-isoline is updated in line 13, and
the same is done with Cx and Cx2 which are read from
precomputed matrix IΣ (see equations (9) and (10) for
definition). Finally, using direction value d2, it translates
the coordinates (i1, j1) to the end of the newly elongated
poly-isoline, and (i2, j2) to the end of the next segment
to be tested. As soon as the GLRT condition becomes
false, line 23 eventually produces the output value of the
denoised image at pixel (i, j), that is, the average gray-
level value along the poly-isoline.

7.4 Hybrid PI-PD : kernel edge detector()

As introduced in section 6.3, the aim of the kernel named
kernel edge detector() is to divide pixels into two
classes according to their belonging to a LSR or not.
Algorithm 4 explains the detailled procedure. Lines 2 to
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Algorithm 3: PI-PD lengthening process
kernel PIPD()

1: foreach pixel (i, j) do /* in parallel */
2: (C1

x, C
1
x2)← z(i, j) ; /* starting pixel */

3: (i1, j1)← (i, j) ; /* first segment */

4: (C1
x, C

1
x2)← IΣ(i1, j1) ; /* read matrix */

5: d1 ← IΘ(i, j) ; /* read matrix */
6: l1 ← l ; /* isoline length */

7: σ1 ← (C1
x2/l1 − C1

x)/l1;
8: (i2, j2)← end of first segment;

9: (C2
x, C

2
x2)← IΣ(i2, j2) ; /* 2nd segment */

10: d2 ← IΘ(i2, j2);

11: σ2 ← (C2
x2/l − C2

x)/l ;
12: while GLRT (σ1, σ2, l1, l) < Tmax do
13: l1 ← l1 + l ; /* lengthening */

14: (C1
x, C

1
x2)← (C1

x, C
1
x2) + (C2

x, C
2
x2);

15: σ1 ← (C1
x2/l1 − C1

x)/l1 ; /* update */

16: (i1, j1)← (i2, j2) ; /* step forward */
17: d1 ← d2;
18: (i2, j2)← end of next segment;

/* next segment */ (C2
x, C

2
x2)← IΣ(i2, j2);

19: d2 ← IΘ(i2, j2);

20: σ2 ← (C2
s2/l − C2

s )/l ;
21: end
22: end

23: Î(i, j)← C1
x/l1 ; /* isoline value */

6 initialize values of the direction index (Θ), the number
of edges detected (edgeCount), the gray-level sum along
the pixels that defines the H half-plane (sumEdge) and
the number of pixels that defines both half-planes H and
L (nH, nL). Then the loop starting at line 7 performs
the GLRT for every considered direction index Θ. Values
sumH and sumL are vectors of two parameters x and
y, parameter x being the sum of gray-level values and y
the sum of square gray-level values. Value sumH is com-
puted along the pixels of half-plane H and is obtained by
loop at lines 10 to 14; Value sumL is computed along the
pixels of half-plane L and is obtained by loop at lines 15
to 19. Value Intex(i, j) refers to the gray-level value at
pixel (i,j) previously stored in texture memory. Eventu-
ally, the isoline level value is output at line 27, 30 or 33
depending on the situation (see 6.3 for details about the
decision process).

8 Results

The proposed hybrid PI-PD model has been evaluated
with the 512x512 pixel sample images used by [1] in order
to make relevant comparisons with other filtering tech-
niques. As we aim to address image processing in very
noisy conditions (as in [14]), we focused on the noisi-
est versions, degraded by AWGN of standard deviation
σ = 25.

Algorithm 4: edge detector and pixel classifier
kernel edge detector()

1: foreach pixel (i, j) do /* in parallel */
2: Θ ← 0; /* direction index */
3: edgeCount← 0;
4: sumEdge← 0;
5: nH ← 5l + 1;
6: nL← 3l;
7: while (Θ < 32) do
8: sumH ← (Intex(i, j), I2ntex(i, j));
9: sumL← (0, 0);

10: for (α = Θ to α = Θ + 16 by step 4) do

11: sPat←
∑

(y,x)∈Pl,α(i,j)

Intex(i+ y, j + x);

12: sPat2←
∑

(y,x)∈Pl,α(i,j)

I2ntex(i+ y, j + x);

13: sumH ← sumH + (sPat, sPat2);
14: end
15: for (α = Θ + 20 to α = Θ + 28 by step 4) do

16: sPat←
∑

(y,x)∈Pl,α(i,j)

Intex(i+ y, j + x);

17: sPat2←
∑

(y,x)∈Pl,α(i,j)

I2ntex(i+ y, j + x);

18: sumL← sumL+ (sPat, sPat2);
19: end
20: if (GLRT (sumH,nH, sumL, nL) > T2max)

then
21: edgeCount← edgeCount+ 1;
22: sumEdge← sumH.x;
23: end
24: Θ ← Θ + 4;
25: end

/* outputs isoline value */

26: if (edgeCount == 0) then

27: Î(i, j)← (sumH.x+ sumL.x)

nH + nL
; /* LSR */

28: end
29: if (edgeCount == 1) then

30: Î(i, j)← (sumEdge)

nH
31: end
32: if (edgeCount > 1) then

33: Î(i, j)← ̂IPIPD(i, j); /* PI-PD */
34: end
35: end

Quality measurements of the denoised images in com-
parison with reference images have been obtained by the
evaluation of:

a) Peak Signal to Noise Ratio (PSNR) that quantifies
the mean square error between denoised and refer-

ence images: MSE(I, Î). We used the following ex-
pression:

PSNR = 10.log10

(
max(Î)

MSE(I, Î)

)
PSNR values are given in dB and highest values mean
best PSNR.
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b) The Mean Structure Similarity Index (MSSIM, de-
fined in [16]), which quantifies local similarities be-
tween denoised and reference images inside a sliding
window. MSSIM values belong to an interval [0; 1];
the closer to 1 the better.

PSNR is widely used to measure image quality but can
be misleading when used by itself: as demonstrated in
[16], the processing of noisy images can bring a high
PSNR value but very bad visual quality. This is avoided
by the use of the MSSIM index along with the PSNR
value: when both of them show high values, the overall
quality can be considered high.

Result figure 9 provides the PSNR and MSSIM of
every image, denoised with three different filters: aver-
age 5x5, hybrid PI-PD and BM3D. The noisy column
shows the values for each image before denoising. BM3D
([9]) is taken as a reference in terms of denoising quality,
while the average filter is taken as a reference in terms
of processing time. The window size of 5x5 pixels has
been choosen to achieve PSNR values similar to those
obtained by PI-PD.

BM3D code is run on a quad-core Xeon E31245 at
3.3GHz and 8GByte RAM under linux kernel 3.2 (64bits),
while PI-PD as well as average filter codes is run on a
Nvidia C2070 GPU hosted by a PC running linux ker-
nel 2.6.18 (64bits). The average filter used is an efficient
parallel GPU implementation that we developped. It is
a generic and versatile separable convolution kernel that
outputs more than 700MPixels per second in the 5x5
averaging configuration.

Hybrid PI-PD measurements were performed with
n = 25, l = 5, Tmax = 1 and T2max = 2. BM3D mea-
surements have been performed with the freely available
BM3D software proposed in [9].

The hybrid PI-PD model proves much faster than
BM3D and better than the average 5x5 filter. Processing
the thirteen images of the database reveals that hybrid
PI-PD brings an average improvement of 1.5dB (PSNR)
and 7.2% (MSSIM) against the average filter at the cost
of 35 times its computational duration. Against hybrid
PI-PD, BM3D achieves an average improvement of 2.4dB
and 4.6% at the cost of 350 times as much duration.
Actually, the 5x5 average filter takes around 0.35 ms
to process an image while hybrid PI-PD needs around
11 ms and BM3D around 4.3 s.

It must be noticed that experimental optimization
show that the vector of parameter values Tmax = 1 and
T2max = 2 is optimal for 11 of the 13 images of the
database. Better results are obtained with a slightly dif-
ferent value of T2max for peppers or zelda whose denoised
images can obtain a MSSIM index of 0.90. Most of the
computational time of hybrid PI-PD is spent by the edge
detector, which clearly does not fit GPU requirements to
achieve good performance. For information, the simple
PI-PD model runs in less than 4 ms in the same condi-
tions.

Image Noisy average hybrid BM3D
5x5 PI-PD

airplane 19.49dB 26.39dB 28.46dB 30.88dB
0.58 0.84 0.88 0.93

barbara 20.04dB 22.76dB 24.26dB 30.60dB
0.70 0.76 0.83 0.94

boat 20.33dB 25.58dB 27.54dB 30.02dB
0.66 0.81 0.87 0.91

couple 20.28dB 25.25dB 27.33dB 29.77dB
0.69 0.79 0.87 0.91

elaine 19.85dB 28.71dB 28.94dB 30.60dB
0.59 0.86 0.87 0.91

fingerprint 20.34dB 23.33dB 26.07dB 27.93dB
0.93 0.87 0.95 0.96

goldhill 19.59dB 26.47dB 27.43dB 29.22dB
0.67 0.82 0.87 0.88

lena 19.92dB 27.99dB 29.14dB 31.80dB
0.60 0.84 0.88 0.93

man 20.38dB 24.74dB 26.74dB 28.14dB
0.71 0.80 0.86 0.87

mandrill 19.34dB 20.34dB 22.38dB 24.75dB
0.77 0.69 0.83 0.88

peppers 19.53dB 27.30dB 28.68dB 30.87dB
0.61 0.86 0.87 0.92

stream 20.35dB 23.23dB 25.35dB 26.34dB
0.80 0.78 0.87 0.88

zelda 17.71dB 23.13dB 27.71dB 30.49dB
0.58 0.87 0.88 0.93

Fig. 9 Comparison between hybrid PI-PD, average and
BM3D filters. PI-PD parameter values: n = 25, l = 5,
Tmax = 1 and T2max = 2. The noisy column correspond
to the noisy input images, before denoising.
Timings: average filter in around 0.35 ms hybrid PI-PD in
around 11.0 ms and BM3D in around 4.3 s

Figure 10 shows denoised images produced by hybrid
PI-PD model compared with the output of the BM3D
and the average 5x5 filters. The figure illustrates the mer-
its and drawbacks of each model: edges are well preserved
by hybrid PI-PD, but a staircase effect is visible, a well-
known artefact inherent to this type of neighborhood fil-
ters. Our recent GPU-implementation of the regression
method proposed in [5] brings a mean improvement of
1dB at the cost of 0.4 ms.

9 Conclusion, future work

From the start, our approach, unlike quite a few oth-
ers, has been to base this study on the conception and
characteristics of the targeted hardware (Nvidia Graphic
cards).

So as to get high execution speeds, we chose, for ex-
ample, to find a method that remains local (concentrat-
ing on the immediate neighborhood of the center pixel),
but still provides very significant benefits, using our tech-
nique of progressive lengthening.

Nevertheless, our method has proved slightly sub-
optimal and lacking robustness in flat regions (see above,
Low Slope Regions), even if the actual visual effect may
be considered quite satisfactory.
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(a) Noisy image σ = 25 (b) Average 5x5 filter, in
0.35 ms

(c) PI-PD hybrid filter,
n = 25, l = 5, Tmax = 1,
T2max = 2, in 11 ms

(d) BM3D filter, in 4.3s

Fig. 10 Comparison of 512x512 images denoised from noisy
airplane image (10a) with a PI-PD filter (10b), PI-PD hybrid
filter (10c) and BM3D filter (10d). Only zoomed parts of
images are shown in order to ensure better viewing.

As a first step to address the above drawbacks, we
have devised a hybrid method that detects and applies
distinct processing to LSR regions (see above). Process-
ing speeds remain fast, and much higher than the BM3D
implementation taken as quality reference. This is very
promising, and opens the perspective of real-time high
definition image sequence processing at 25 fps, provided
we improve the edge detector, which currently limits the
HD frame rate at 16fps (High Definition: 1920x1080 pix-
els).

To further improve the quality of output images, we
also implemented a efficient parallel implementation of
the staircase effect reduction technique presented in [5].
With this method, searching for best improvement fac-
tors leads to different parameters values for each image
processed, which prompts to studying some way of over-
riding such parameters.

Our study so far has been based on additive noise; we
are currently working on transposing criteria to various
multiplicative noise types. We also extended the process
to color images with very interesting visual results to be
confirmed by the experimental measurement currently in
progress.
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