
Integrating HPC and GPU processors
Experience with NVIDIA Tesla

2 ©Bull, 2008 GPU Programming with CUDA by P.-E. BERNARD & C. BERTHELOT & G. SAUVEBOIS

Contents - Introduction

- Why use GPU for computing ?
- Motivation
- Working principle of CUDA from NVIDIA

- Hardware items for GPU computing

- Overview of Hardware Architecture

- Software Components : CUDA from NVIDIA

3 ©Bull, 2008 GPU Programming with CUDA by P.-E. BERNARD & C. BERTHELOT & G. SAUVEBOIS

Motivation

Frequency scaling is over
⇒ We are now scaling cores

- Scaling cores in a system
- Memory wall continues to get worse

- Core scale out (increase server numbers)
- Network bandwidth continues to increase
- Network latency is limited by distance

Specialized Massively parallel computers
have lost the economic argument
against the advance of commodity technology

4 ©Bull, 2008 GPU Programming with CUDA by P.-E. BERNARD & C. BERTHELOT & G. SAUVEBOIS

Why using NVIDIA GPU for computing ?

- GPU = Graphics Processing Unit (= device)
- Chip in 3D computer video card =>

GPU is a commodity component

- NVIDIA GPU is massively multi-threaded many cores
- Up to 240 threads executed in parallel
- Up to 30720 concurrent threads in flight

- NVIDIA GPU is fast
- Theoretical peak performance:

• 1 TeraFlops in single precision
• 85 GigaFlops in double precision

- Memory access peak bandwidth: 102GB/s

5 ©Bull, 2008 GPU Programming with CUDA by P.-E. BERNARD & C. BERTHELOT & G. SAUVEBOIS

How to use NVIDIA GPU power for computing ?

CUDA = Compute Unified Device Architecture

- CUDA is a scalable programming model and a software
environment for parallel computing
- Extension to C/C++ environment
- Heterogeneous serial-parallel programming model
- Enable general-purpose GPU computing
- Expose the computational horsepower of NVIDIA GPUs

⇒ NVIDIA GPU computing with CUDA brings parallel
computing to the masses

6 ©Bull, 2008 GPU Programming with CUDA by P.-E. BERNARD & C. BERTHELOT & G. SAUVEBOIS

Introduction to GPU execution model

Host System (CPU)

C1

Host Memory

C8···

Device (GPU)

Device Memory

SM

SP

host thread
GPUs threads

execute kernel 1

kernel = function called from the host that runs on the device
8 Scalar Processor cores (SP) per Streaming Multiprocessor (SM)
device

7 ©Bull, 2008 GPU Programming with CUDA by P.-E. BERNARD & C. BERTHELOT & G. SAUVEBOIS

Introduction to CUDA programming model

- The GPU is a compute device
- serves as a co-processor for the host CPU
- has its own device memory on the card
- has a set of processor cores organized hierarchically

- The GPU is Highly Multi-threaded
- runs a single code (kernel) in many threads
- executes many threads in parallel
- uses multiple active threads per compute unit

- GPU threads are extremely lightweight
- thread creation and context switching are essentially free

- GPU expects 1000's of threads for full utilization

A Highly Multi-threaded Co-processor

8 ©Bull, 2008 GPU Programming with CUDA by P.-E. BERNARD & C. BERTHELOT & G. SAUVEBOIS

Contents - Introduction

- Why use GPU for computing ?

- Hardware items for GPU computing

- Overview of Hardware Architecture

- Software Components : CUDA from NVIDIA

9 ©Bull, 2008 GPU Programming with CUDA by P.-E. BERNARD & C. BERTHELOT & G. SAUVEBOIS

- Chip series G8x, G9x or GT200/T10

- CUDA enabled products
- NVIDIA TESLA - GPU solution for HPC (No video output)

• Computing processor (board): C870, C1060
• Deskside computing system: D870
• 1U GPU Computing system: S870, S1070

- NVIDIA Quadro - GPU solutions for 3D professional
• Quadro FX 3700, Quadro FX 1700, ...
• Quadro FX 5600, Quadro FX 4600, ...

- NVIDIA GeForce - GPU for 3D on desktop
• GeForce GTX 280, Ge Force GTX 260
• GeForce 9800*, GeForce 9600*, ...
• GeForce 8800*, GeForce 8600*, ...

Overview of NVIDIA Hardware Product

10 ©Bull, 2008 GPU Programming with CUDA by P.-E. BERNARD & C. BERTHELOT & G. SAUVEBOIS

NVIDIA Tesla S1070

- 4 Teraflops peak in 1U
- 4 x GPUs -- model GT200/T10
- 120 Streaming Multiprocessors (30 per GPU)
- 960 scalar processor cores at 1.44GHz (240 per GPU)
- IEEE754 single and double precision
- 16GB of memory (4x4GB), 512-bit GDDR3 at 800MHz
- 2 Host Interface Card (HIC) PCIe 2.0 x16 (8GB/s)
- 700 Watts (own power supply)

11 ©Bull, 2008 GPU Programming with CUDA by P.-E. BERNARD & C. BERTHELOT & G. SAUVEBOIS

Compute capability of NVIDIA GPUs

Different GPU chip series used in different products
⇒ With different features in different GPUs

The Compute Capability level of a GPU determines
- Computing features of the GPUs
- Some hardware characteristics of a GPUs

compute capability 1.(n+1)
supersedes compute capability 1.n

 The Software CUDA can interrogate the compute device
(GPU) to determine its compute capability

Product with latest compute capability 1.3:
- NVIDIA Tesla S1070, Tesla C1060
- NVIDIA GeForce GTX280, GeForce GTX260
Support for double-precision floating point numbers

12 ©Bull, 2008 GPU Programming with CUDA by P.-E. BERNARD & C. BERTHELOT & G. SAUVEBOIS

Contents - Introduction

- Why use GPU for computing ?

- Hardware items for GPU computing

- Overview of Hardware Architecture

- Software Components : CUDA from NVIDIA

13 ©Bull, 2008 GPU Programming with CUDA by P.-E. BERNARD & C. BERTHELOT & G. SAUVEBOIS

System Architecture - block diagram

Host System

PCIe Host
Interface

card
Chipset

C1

Memory

C8···

Host System

PCIe Host
Interface

card
Chipset

C1

Memory

C8···

Tesla S1070

Nvidia
Switch

Tesla GPU
Memory

Tesla GPU
Memory

Tesla GPU
Nvidia
Switch

Memory
Tesla GPU
Memory

PCIe 2.0 x16 (=8GB/s)

device device

device device

Connection between Host System and Tesla S1070

14 ©Bull, 2008 GPU Programming with CUDA by P.-E. BERNARD & C. BERTHELOT & G. SAUVEBOIS

Bull targeted servers for GPU computing

Bull NovaScale for HPC with
2 x dual core Intel® Xeon® (5200) at up to 3.4GHz OR
2 x quad core Intel® Xeon® (5400) at up to 3.2GHz

- NovaScale R421-E1
- Connect up to 2GPUs of half of a Tesla S1070

- NovaScale R422-E1
- 2 x servers in 1U
- Connect up to 2GPUs of half of a Tesla S1070 per server

- NovaScale R425
- 2 x bus slots PCIe x16 Gen2
- Connect up to 4GPUs of a Tesla S1070 OR

Connect up to 2 Tesla C1060

15 ©Bull, 2008 GPU Programming with CUDA by P.-E. BERNARD & C. BERTHELOT & G. SAUVEBOIS

Typical architecture

serveurs R422
e.g. compute nodes

2 nœuds - 2 x:
• 2 sockets X5335
 Quad Cœurs 2GHz
• 16 GB DDR2
• 2x160GB SATA2
• Connect-X Gen2

12 disks :
6 SAS 146GB

15 krpm,
6 SATA2 500GB

7.2 krpm.

Storage

1 serveur R460
1 management/login node

• 2 sockets X5130
 Bi cœurs 2GHz
• 8 GB DDR2
• 2x146GB SAS 15krpm
• Connect-X Gen2

1 serveur R460
1 management node

• 2 sockets X5130
 Bi cœurs 2GHz
• 8 GB DDR2
• 2x146GB SAS 15krpm
• Connect-X Gen2

Screen

GigaBit Ethernet Administrative Network

FC links

(BMC) SOL

1 serveur R460
1 I/O node MDS

• 2 sockets X5130
 Bi cœurs 2GHz
• 16 GB DDR2
• 2x146GB SAS 15krpm
• Connect-X Gen2

1 serveur R460
1 I/O node OSS

• 2 sockets X5130
 Bi cœurs 2GHz
• 16 GB DDR2
• 2x146GB SAS 15krpm
• Connect-X Gen2

Application and I/O Network InfiniBand

Voltaire
 InfiniBand
switch

serveurs R422-E1 + Tesla S1070
e.g. 2 compute nodes with ‘GPUs’

2 nodes - 2 x:
• 2 sockets X472
 Quad Cœurs 3GHz
• 16 GB DDR2
• 160GB SATA2
+ Tesla S1070

+

16 ©Bull, 2008 GPU Programming with CUDA by P.-E. BERNARD & C. BERTHELOT & G. SAUVEBOIS

GPU architecture overview - block diagram

Device Memory

Device (GPU)

Streaming Multiprocessor (SM) n
Streaming Multiprocessor 2

Streaming Multiprocessor 1

·
·
·
·

Shared Memory

· · ·Instruction
Unit

Scalar
Processor 8

· · · ·

Scalar
Processor 1

64-bits
FPU

Scalar
Processor 2

17 ©Bull, 2008 GPU Programming with CUDA by P.-E. BERNARD & C. BERTHELOT & G. SAUVEBOIS

GPU architecture overview - Characteristics

- Device (GPU) contains:
- a device memory of type GDDR3,
- a set of Streaming Multiprocessors (SM)

- A Streaming Muliprocessor contains:
- one Instruction Unit,
- 8 x 32-bits Scalar Processor cores (SP),
- one 64-bit Floating Point Unit (only on GT200),
- 16KB of shared memory, local to each SM.

It means, shared only between Scalar Processor cores of the
same Streaming Multiprocessor.

The SPs of an SM work synchronously on the same instruction =>
SIMT = Single Instruction Multiple Thread

18 ©Bull, 2008 GPU Programming with CUDA by P.-E. BERNARD & C. BERTHELOT & G. SAUVEBOIS

Peak Performance of Tesla S1070

NVIDIA Tesla S1070: 4 GPUs with
- 30 Streaming Multiprocessors with one FMAD (2 op) Double

Precision each cycle per GPU,
- 240 (=30x8) Scalar Processor cores with one FMAD (2 op) and

one FMUL (1 op) Single Precision each cycle per GPU,
- GPU Frequency 1.44 GHz,
- Memory GDDR3 dual channel, 512-bits wide at 800MHz

- Single Precision: 4147 GFlops/s
= 4 GPU x 240 SP x (2 + 1) x 1.44 GHz

- Double Precision: 345 GFlops/s
= 4GPU x 30 SM x 2 x 1.44 GHz

- Device Memory Bandwidth: 409,6 GB/s
= 4 GPU x 2 channel x (512 bits / 8) x 800MHz

19 ©Bull, 2008 GPU Programming with CUDA by P.-E. BERNARD & C. BERTHELOT & G. SAUVEBOIS

Contents - Introduction

- Why use GPU for computing ?

- Hardware items for GPU computing

- Overview of Hardware Architecture

- Software Components : CUDA from NVIDIA

20 ©Bull, 2008 GPU Programming with CUDA by P.-E. BERNARD & C. BERTHELOT & G. SAUVEBOIS

CUDA software Layer

Device (GPU)

Host (CPU)

CUDA Runtime API
BLAS FFTW

CUDA libraries

CUDA Driver API

CUDA device Driver

Application
Extended C/C++

Application (C, C++, or Fortran)

compiled
with nvcc

21 ©Bull, 2008 GPU Programming with CUDA by P.-E. BERNARD & C. BERTHELOT & G. SAUVEBOIS

CUDA Software Components

- CUDA Driver
- Nvidia driver with CUDA support for Linux 64-bit

- CUDA Toolkit
- nvcc Extended C/C++ compiler
- CUDA FFT and CUDA BLAS libraries
- gdb debugger for GPU
- Emulation libraries (for Emulation of GPU code on CPU)
- CUDA Runtime API library
- CUDA programing manual

- CUDA Developer SDK
- Set of examples with source code.

- CUDA Profiler

22 ©Bull, 2008 GPU Programming with CUDA by P.-E. BERNARD & C. BERTHELOT & G. SAUVEBOIS

What is the CUDA Runtime API ?

- An Application Programing Interface (API)
to use the device/GPU from the host/CPU code.

- Extensions to C/C++ language
to write and call device kernel.

- A compiler of the extended C/C++ language (nvcc).

- Shared runtime libraries to link with CUDA code.
- Set of shared libraries to use the device
- Set of shared libraries to emulate the device on the CPU.

23 ©Bull, 2008 GPU Programming with CUDA by P.-E. BERNARD & C. BERTHELOT & G. SAUVEBOIS

Application guideline

- Identify Hot Spot (75% of computational time)
=> Write GPU code only for that part

- Single precision performance is more than 8x better
than double precision.

- Keep data on GPU memory.
- Prefer structure of arrays than an array of structure.

- Double precision application needs hybrid code
Ex.: Hybrid DGEMM (Matrix product double precision)

40% on 4 cores using OpenMP and
60% on one GPU

25 ©Bull, 2008 GPU Programming with CUDA by P.-E. BERNARD & C. BERTHELOT & G. SAUVEBOIS

void comp2Df(int n, float *tF) {
 float *d_tF;
 dim3 blkDim, grdDim;
 int memSize = n * n * sizeof(float);
 cudaMalloc((void**)&d_tF, memSize);
 blkDim.x = blkDim.y = 16;
 grdDim.x = (n + 15)/blkDim.x;
 grdDim.y = (n + 15)/blkDim.y;
 k_comp2Df<<<grdDim,blkDim>>>(n, d_tF)
 cudaMemcpy(tF, d_tF, memSize, cudaMemcpyDeviceToHost);
 cudaFree(d_tF); }

Example: Compute of f(x,y) on a 2D domain
Allocate memory

on device

Call CUDA Kernel

__global__ void k_comp2Df(int n, float *tF) {
 float2 p;
 int i = blockIdx.x * blockDim.x + threadIdx.x;
 int j = blockIdx.y * blockDim.y + threadIdx.y;
 if((i < n) && (j < n)) {
 p.x = (2.0 / (n - 1.0)) * i - 1.0;
 p.y = (2.0 / (n - 1.0)) * j - 1.0;
 tF[n * j + i] = f(p.x, p.y);
} }

CUDA kernel

__host__ __device__ float f(float x, float y) {
 return expf(-x*x-y*y); }

Copy memory
back to host

Free memory

Function
on device

blkDim.x × blkDim.y  512

26 ©Bull, 2008 GPU Programming with CUDA by P.-E. BERNARD & C. BERTHELOT & G. SAUVEBOIS

Compilation flow of CUDA code with nvcc

Source code (*.cu)

CUDA Compiler Front End
host source code

device source code (*.gpu)

Compilation of device/GPU code

Integration of row device/GPU code
into host/CPU source code

Compilation of host/CPU code

device assembler (*.ptx) device binary (*.cubin)

Link

Application

nvcc

gcc/ g++

