
Really quick shift: Image segmentation on a
GPU

Brian Fulkerson and Stefano Soatto

Department of Computer Science,
University of California, Los Angeles
{bfulkers,soatto}@cs.ucla.edu

http://vision.ucla.edu/

Abstract. The paper presents an exact GPU implementation of the
quick shift image segmentation algorithm. Variants of the implementa-
tion which use global memory and texture caching are presented, and the
paper shows that a method backed by texture caching can produce a 10-
50X speedup for practical images, making computation of super-pixels
possible at 5-10Hz on modest sized (256x256) images.

Key words: super-pixels, segmentation, CUDA, GPU programming

1 Introduction

Segmentation algorithms have played an important role in computer vision re-
search, both as an end goal [1–3] and more recently as a preprocessing step
for other domains, including stereo [4] and category-level scene parsing [5, 6].
Breaking the image into smaller components, often called super-pixels, allows
algorithms to consider the image in meaningful chunks, rather than at the low-
est common denominator (pixels).

Unfortunately, algorithms developed for segmentation are often quite costly
in both memory usage and computation. This bottleneck limits the scale of the
applications and data that they can be applied to.

In this work, we show that a GPU implementation of quick shift [3] can
improve the performance of an already (relatively) fast segmentation algorithm
by 10X-50X, opening up a host of potential new applications such as scene
understanding in videos, and improved real time video abstraction [7].

2 Related Work

Most related work involving GPUs for segmentation is in the medical imaging
domain, where the extra dimension of data (a volume instead of an image) has
made speed a requirement rather than an option [8–11]. One notable exception
found outside of medical imaging is that of Catanzaro et al . [12] who adapt a
boundary detection technique (gPb [13]) to the GPU. While gPb can be used



2 B. Fulkerson, S. Soatto

for segmentation [14], our exact implementation of quick shift is over ten times
faster on similar hardware.

In recognition, GPU based feature detectors and trackers [15, 16] have been
proposed, as have learning components such as support vector machines [17]
and k-nearest neighbors [18]. Recently, Wojek et al . [19] even proposed a GPU
accelerated sliding window categorization scheme.

Other recent successes in using GPUs for vision include general purpose
libraries such as OpenVIDIA [20], and specific applications which are often cen-
tered around video such as motion detection [21] or particle filtering [22].

Carreira et al . [23] have done work on approximating Gaussian Mean Shift
(GMS) by decreasing the number of iterations required by the algorithm and the
cost per iteration (by approximating the density). We effectively circumvent the
need to optimize the number of iterations because quick shift only requires one
iteration. Instead of approximating the density, we simply exploit the parallelism
of the density computation to achieve a speedup by using hardware suited for
the task (a GPU). We note that we could also approximate the density as in
[23], and that would result in further speedups.

3 Quick shift algorithm

Quick shift is a kernelized version of a mode seeking algorithm similar in concept
to mean shift [2, 24] or medoid shift [25]. Given N data points x1, . . . , xN , it
computes a Parzen density estimate around each point using, for example, an
isotropic Gaussian window:

P (x) =
1

2πσ2N

N∑
i=1

e
−‖x−xi‖

2

2σ2

Once the density estimate P (x) has been computed, quick shift connects
each point to the nearest point in the feature space which has a higher density
estimate. Each connection has a distance dx associated with it, and the set of
connections for all pixels forms a tree, where the root of the tree is the point
with the highest density estimate.

Quick shift may be used for any feature space, but for the purpose of this
paper we restrict it to one we can use for image segmentation: the raw RGB
values augmented with the (x, y) position in the image. So, the feature space is
five dimensional: (r, g, b, x, y). To adjust the trade-off between the importance of
the color and spatial components of the feature space, we simply pre-scale the
(r, g, b) values by a parameter λ, which for these experiments we fix at λ = 0.5.

To obtain a segmentation from a tree of links formed by quick shift, we choose
a threshold τ and break all links in the tree with dx > τ . The pixels which are
a member of each resulting disconnected tree form each segment.



Really quick shift: Image segmentation on a GPU 3

3.1 Segmentation specific optimizations

In the case where our feature space is restricted to contain components which
are defined on the image plane, and our set of data points are the set of pixels,
we can immediately put some useful bounds on both the density computation
and the neighbor linking process.

First, when computing the energy we can restrict the domain of pixels we
consider to a window which is less than 3σ pixels away, because beyond this the
contribution to the density is guaranteed to be small. Second, when linking the
neighbors, there is also a natural bound for the search window, because pixels
which are further than τ away in the image plane must be at least that far away
in the feature space. Conceptually we will talk about the density computation
and linking process as separate components of the algorithm, because one (the
density computation) must precede the other, and they operate on different
domains of data. A pseudo-code implementation is shown in Figure 2, and some
segmentations with various parameters are shown in Figure 1.

4 Quick shift on a GPU

Because quick shift operates on each pixel of an image, and the computation
which takes place at each pixel is independent of its distant surroundings, it is
a good candidate for implementation on a parallel architecture.

We use CUDA 3.0 to develop a first implementation which simply copies the
image to the device and breaks the computation of the density and the neighbors
into blocks for the GPU to process.

Although this is faster than the CPU version, the bottleneck is clearly mem-
ory latency. Global memory on GPUs is slow, requiring hundreds of cycles to
access, and for each pixel quick shift needs to access ceil((6 ∗ σ)2) neighbors.

To address this, one option is to load an apron of pixels surrounding the
block being computed into shared memory, so that when an element of the
block computes its similarity with a pixel outside of the block, the memory
access is cached. However, because this operation is not easily separable, the
shared memory requirement scales quadratically with sigma. Even modest values
of sigma will quickly exhaust the 16000 bytes of shared memory available on
modern GPUs.

So, we instead map the image and the estimate of the density to a 3D and
2D texture, respectively. We have good locality of access because each thread
accesses a block of pixels around it. The results based of this texture cached
approach are labeled with a “Tex” suffix in the next section.

5 Evaluation

There are two aspects of the algorithm to evaluate: the correctness and the time
required. To confirm the correctness of the GPU implementation, we compare



4 B. Fulkerson, S. Soatto

Fig. 1. Sample quick shift results. Increasing σ smoothes the underlying estimate
of the density, providing fewer modes. Increasing τ increases the average size of a region
as well as the error in the distance estimate. The top row of images have σ = 2, the
bottom row σ = 10. The left column has τ = 10 and the right τ = 20.

function computeDensity()

for x in all pixels

P[x] = 0

for n in all pixels less than 3*sigma away

P[x] += exp(-(f[x]-f[n])^2 / (2*sigma*sigma))

function linkNeighbors()

for x in all pixels

for n in all pixels less than tau away

if P[n] > P[x] and distance(x,n) is smallest among all n

d[x] = distance(x,n)

parent[x] = n

Fig. 2. Quick shift image segmentation in pseudo-code. The algorithm proceeds
in two steps. First it iterates over the image creating a Parzen estimate of the density
at each pixel. Then, it links each pixel to the nearest pixel (in the feature space) which
increases the estimate of the density.



Really quick shift: Image segmentation on a GPU 5

Fig. 3. Evaluation images. Four images from PASCAL-2007 used to evaluate the
speed of the proposed algorithm.



6 B. Fulkerson, S. Soatto

the energy and segmentation to the one returned by the publicly available im-
plementation of quick shift in VLFeat [26].

To measure the speed of the algorithm, we pick a few random images from
the PASCAL-2007 dataset (shown in Figure 3). The images are cropped and
up-sampled to 1024x1024. All reported performance numbers are obtained by
averaging the results from all of the images.

We explore the effect of each parameter which changes the runtime of the
algorithm. First, in Figure 4 we show the performance of the algorithms as
the resolution of the image is increased while keeping σ and τ fixed. Next, in
Figure 5 we keep the resolution fixed at 512x512, fix τ , and adjust σ, showing
how it affects the runtime of just the density computation part of the algorithm.
Finally, Figure 6 keeps both the resolution and σ fixed and instead adjusts τ ,
showing the time required to link the neighbors.

Hardware. The CPU ground truth version is evaluated on a 2.4Ghz Core
2 Duo. We show results for two GPUs: a laptop board (GeForce 8600M GT),
and a mid-range desktop card (GeForce 9800 GT). The 8600M GT has 4 mul-
tiprocessors, 32 cores, and a core clock speed of 475MHz. The 9800 GT has 14
multiprocessors, 112 cores, a 550MHz core clock speed. Due to limits on the
runtime of CUDA kernels on the 8600M, in Figures 5 and 6 results are not
reported for the slowest running case because the kernel was stopped before
completion. We note that while newer hardware (such as cards based on the
recently released FERMI architecture) would undoubtedly be faster, we want to
show what is possible with only limited hardware investment.

For both GPUs evaluated we use a block size of 16x16, even though it has
been shown that tuning the block size for a particular GPU can provide a boost
in performance.

Our complete source code is available on our website at http://vision.
ucla.edu/~brian/gpuquickshift.html.

6 Conclusion

We have shown a GPU implementation of quick shift which provides a 10 to 50
times speedup over the CPU implementation, resulting in a super-pixelization
algorithm which can run at 10Hz on 256x256 images. The implementation is an
exact copy of quick shift, and could be further speeded up by approximating the
density, via subsampling or other methods. It is likely that the implementation
would also present similar speedups for exact mean shift.

Acknowledgements

This research was supported by ONR 67F-1080868/N00014-08-1-0414, ARO56765-
CI and AFOSR FA9550-09-1-0427.



Really quick shift: Image segmentation on a GPU 7

0.01

0.1

1

10

100

128 256 512 1024

CPU
8600M GT
8600M GT-Tex
9800 GT
9800 GT-Tex

Time (s)

Resolution

Fig. 4. Quick shift CPU vs GPU. The graph shows the amount of time required
on two different GPUs as the resolution of the image is increased. Results are averaged
over the four images from PASCAL-2007 shown in Figure 3. For this data, σ = 6 and
τ = 10. At 1024x1024, the speedup compared to the CPU version is 54X.

0.01

0.1

1

10

100

2 4 6 10

CPU
8600M GT
8600M GT-Tex
9800 GT
9800 GT-Tex

Time (s)

Sigma

Fig. 5. Effect of σ on density computation time. As in Figure 4, we show that
as σ is increased, processing time is increased and the texture memory-backed GPU
version remains the most efficient option. Here we fix τ = 10 and the image resolution
to 512x512. Results are averaged over the same four images as before.



8 B. Fulkerson, S. Soatto

0.01

0.1

1

10

4 10 20

CPU
8600M GT
8600M GT-Tex
9800 GT
9800 GT-Tex

Time (s)

Tau

Fig. 6. Effect of τ on neighbor linking time. We show that as τ is increased, the
amount of time required for finding the nearest neighbor which increases the density
estimate is naturally increased. Here we fix σ = 6 and the image resolution to 512x512.
Results are averaged over the same four images as before.

References

1. Shi, J., Malik, J.: Normalized cuts and image segmentation. PAMI 22 (2000) 888
2. Comaniciu, D., Meer, P.: Mean shift: A robust approach toward feature space

analysis. PAMI 24 (2002)
3. Vedaldi, A., Soatto, S.: Quick shift and kernel methods for mode seeking. In: Proc.

ECCV. (2008)
4. Lei, C., Selzer, J., Yang, Y.: Region-tree based stereo using dynamic programming

optimization. In: Proc. CVPR. (2006)
5. Fulkerson, B., Vedaldi, A., Soatto, S.: Class segmentation and object localization

with superpixel neighborhoods. In: Proc. ICCV. (2009)
6. Gould, S., Rodgers, J., Cohen, D., Elidan, G., Koller, D.: Multi-class segmentation

with relative location prior. In: IJCV. (2008)
7. Winnemoller, H., Olsen, S., Gooch, B.: Real-time video abstraction. ACM Trans-

actions on Graphics (TOG) 25 (2006) 1226
8. Sherbondy, A., Houston, M., Napel, S.: Fast volume segmentation with simultane-

ous visualization using programmable graphics hardware. In: Proceedings of the
14th IEEE Visualization 2003 (VIS’03), IEEE Computer Society (2003) 23

9. Cates, J., Lefohn, A., Whitaker, R.: GIST: an interactive, GPU-based level set
segmentation tool for 3D medical images. Medical Image Analysis 8 (2004) 217–
231

10. Lefohn, A., Cates, J., Whitaker, R.: Interactive, gpu-based level sets for 3d segmen-
tation. Medical Image Computing and Computer-Assisted Intervention-MICCAI
2003 (2003) 564–572

11. Lin, Y., Medioni, G.: Mutual information computation and maximization using
gpu. In: Workshop on Computer Vision using GPUs. (2008)



Really quick shift: Image segmentation on a GPU 9

12. Catanzaro, B., Su, B., Sundaram, N., Lee, Y., Murphy, M., Keutzer, K.: Efficient,
high-quality image contour detection. In: Proc. ICCV. (2009)

13. Maire, M., Arbelaez, P., Fowlkes, C., Malik, J.: Using contours to detect and
localize junctions in natural images. In: Proc. CVPR. (2008)

14. Arbeláez, P., Maire, M., Fowlkes, C., Malik, J.: From contours to regions: An
empirical evaluation. In: Proc. CVPR. (2009)

15. Sinha, S., Frahm, J., Pollefeys, M., Genc, Y.: GPU-based video feature tracking
and matching. In: EDGE, Workshop on Edge Computing Using New Commodity
Architectures. Volume 278., Citeseer (2006)

16. Heymann, S., Maller, K., Smolic, A., Froehlich, B., Wiegand, T.: SIFT implemen-
tation and optimization for general-purpose GPU. In: Proc. WSCG. (2007)

17. Catanzaro, B., Sundaram, N., Keutzer, K.: Fast support vector machine training
and classification on graphics processors. In: Proceedings of the 25th international
conference on Machine learning, ACM (2008) 104–111

18. Garcia, V., Debreuve, E., Barlaud, M.: Fast k nearest neighbor search using gpu.
In: Workshop on Computer Vision using GPUs. (2008)

19. Wojek, C., Dorkó, G., Schulz, A., Schiele, B.: Sliding-windows for rapid object
class localization: A parallel technique. Pattern Recognition (2008) 71–81

20. Fung, J., Mann, S.: OpenVIDIA: parallel GPU computer vision. In: Proceedings
of the 13th annual ACM international conference on Multimedia. (2005) 852

21. Yu, Q., Medioni, G.: A gpu-based implementation of motion detection from a
moving platform. In: Workshop on Computer Vision using GPUs. (2008)

22. Murphy-Chutorian, E., Trivedi, M.M.: Particle filtering with rendered models: A
two pass approach to multi-object 3d tracking with the gpu. In: Workshop on
Computer Vision using GPUs. (2008)

23. Carreira-Perpinán, M.: Acceleration strategies for Gaussian mean-shift image seg-
mentation. In: Proc. CVPR. (2006)

24. Fukunaga, K., Hostler, L.D.: The estimation of the gradient of a density function,
with applications in pattern recognition. IEEE Trans. on Information Theory 21
(1975)

25. Sheikh, Y.A., Khan, E.A., Kanade, T.: Mode-seeking by medoidshifts. In: Proc.
CVPR. (2007)

26. Vedaldi, A., Fulkerson, B.: VLFeat - an open and portable library of computer
vision algorithms. In: Proceedings of the 18th annual ACM international conference
on Multimedia. (2010)


