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streaming multiprocessor resources – part I

We have two graphics cards with respective compute capabilities 1.1
and 2.0: a GeForce 9400M and a Tesla C2050/C2070.

compute capability 1.1 2.0

maximum number of threads per block 512 1,024
maximum number of resident blocks
per streaming multiprocessor 8 8
warp size 32 32
maximum number of resident warps
per streaming multiprocessor 24 48
maximum number of resident threads
per streaming multiprocessor 768 1,536
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dynamic partitioning of thread slots

During runtime, thread slots are partitioned
and assigned to thread blocks.

Streaming multiprocessors are versatile by their ability to dynamically
partition the thread slots among thread blocks.

They can

either execute many thread blocks of few threads each,

or execute a few thread blocks of many threads each.

In contrast, fixed partitioning where the number of blocks and threads
per block are fixed will lead to waste.
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interactions between resource limitations

The Tesla C2050/C2070 has 1,536 thread slots per streaming
multiprocessor. As 1, 536 = 32 × 48, we have

number of thread slots = warp size × number of warps per block.

For 32 threads per block, we have 1,536/32 = 48 blocks
↔ at most 8 blocks per streaming multiprocessor.

To fully utilize both the block and thread slots,
to have 8 blocks, we should have

1, 536/8 = 192 threads per block, or

192/32 = 6 warps per block.
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streaming multiprocessor resources – part II

We have two graphics cards with respective compute capabilities 1.1
and 2.0: a GeForce 9400M and a Tesla C2050/C2070.

compute capability 1.1 2.0

number of 32-bit registers
per streaming multiprocessor 8K 32K
maximum amount of shared memory
per streaming multiprocessor 16KB 48KB
number of shared memory banks 16 32
amount of local memory per thread 16KB 512KB
constant memory size 64KB
cache working set for constant memory
per streaming memory 8KB

Local memory resides in device memory, so local memory accesses
have the same high latency and low bandwidth as global memory.
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dynamic partitioning of resources

Registers hold frequently used programmer and compiler-generated
variables to reduce access latency and conserve memory bandwidth.

Variables in a kernel that are not arrays
are automatically placed into registers.

By dynamically partitioning the registers among blocks,
a streaming multiprocessor can accommodate

more blocks if they require few registers, and

fewer blocks if they require many registers.

As with block and thread slots, there is a potential interaction between
register limitations and other resource limitations.
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interactions between resource limitations
Consider the matrix-matrix multiplication example. Assume

the kernel uses 21 registers, and

we have 16-by-16 thread blocks.

How many threads can run on each streaming multiprocessor (SM)?

1 We calculate the number of registers for each block:

16 × 16 × 21 = 5, 376 registers.

2 We have 32 × 1, 024 registers per SM:

32 × 1, 024/5, 376 = 6 blocks

and 6 < 8 = the maximum number of blocks per SM.

3 We calculate the number of threads per SM:

16 × 16 × 6 = 1, 536 threads

and we can have at most 1,536 threads per SM.
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a performance cliff

Suppose we use one extra register, 22 instead of 21.

1 We calculate the number of registers for each block:

16 × 16 × 22 = 5, 632 registers.

2 We have 32 × 1, 024 registers per SM:

32 × 1, 024/5, 632 = 5 blocks.

3 We calculate the number of threads per SM:

16 × 16 × 5 = 1, 280 threads

and with 21 registers we could use all 1,536 threads per SM.

Adding one register led to a reduction of 17% in the parallelism.

When a slight increase in one resource leads to a dramatic reduction
in parallelism and performance, one speaks of a performance cliff.
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the CUDA occupancy calculator

Introduction to Supercomputing (MCS 572) Performance Considerations 6 April 2012 11 / 26



Performance Considerations

1 Dynamic Partitioning of Resources
streaming multiprocessor resources
the CUDA occupancy calculator

2 the Compute Visual Profiler
getting started with computeprof
analysis of the kernel matrixMul

3 Data Prefetching and Instruction Mix
registers between global and shared memory
maximizing instruction throughput

Introduction to Supercomputing (MCS 572) Performance Considerations 6 April 2012 12 / 26



getting started with computeprof

Compute Visual Profiler is a graphical user interface based profiling
tool to measure performance and to find potential opportunities for
optimization in order to achieve maximum performance.

Login to dezon with ssh -X and go the directory
/usr/local/cuda/computeprof/bin
to launch the program computeprof.

We look at one of the example projects matrixMul.
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GPU time summary
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limiting factor identification

IPC = Instructions Per Cycle

Introduction to Supercomputing (MCS 572) Performance Considerations 6 April 2012 16 / 26



memory throughput analysis

Introduction to Supercomputing (MCS 572) Performance Considerations 6 April 2012 17 / 26



instruction throughput analysis

IPC = Instructions Per Cycle

Introduction to Supercomputing (MCS 572) Performance Considerations 6 April 2012 18 / 26



occupancy analysis
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accessing global memory

One of the most important resource limitations is access to global
memory and long latencies.

Scheduling other warps while waiting for memory access is powerful,
but often not enough.

A complementary to warp scheduling solution is to prefetch the next
data elements while processing the current data elements.

Combined with tiling, data prefetching provides extra independent
instructions to enable the scheduling of more warps to tolerate long
memory access latencies.
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prefetching in registers

For the tiled matrix-matrix multiplication,
the code below combines prefetching with tiling:

load first tile from global memory into registers;
loop
{

deposit tile from registers to shared memory;
__syncthreads();
load next tile from global memory into registers;
process current tile;
__syncthreads();

}

The prefetching adds independent instructions between loading the
data from global memory and processing the data.
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throughput of arithmetic instructions

Number of operations per clock cycle per multiprocessor:

compute capability 1.x 2.0

32-bit floating-point
add, multiply, multiply-add 8 32
64-bit floating-point
add, multiply, multiply-add 1 16
32-bit integer
add, logical operation, shift, compare 8 32
32-bit floating-point
reciprocal, square root, log, exp,
sine, cosine 2 4
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loop unrolling

Consider the following code snippet:

for(int k = 0; k < m; k++)
C[i][j] += A[i][k]*B[k][j];

Counting all instructions:

1 loop branch instruction (k < m);

1 loop counter update instruction (k++);

3 address arithmetic instructions ([i][j], [i][k], [k][j]);

2 floating-point arithmetic instructions (+ and *).

Of the 7 instructions, only 2 are floating point.

Loop unrolling reduces the number of loop branch instructions,
loop counter updates, address arithmetic instructions.

Note: gcc -funroll-loops is enabled with gcc -O2.
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summary and exercises

We covered §6.3, §6.4, and §6.5 in the book of Kirk & Hwu;
using data from Appendix G in the CUDA programming Guide.

1 Examine the occupancy calculator for the graphics card on your
laptop or desktop.

2 Read the user guide of the compute visual profiler and perform a
run on GPU code you wrote (of some previous exercise or your
code for the third project). Explain the analysis of the kernel.

3 Redo the first “interactions between resource limitations” of this
lecture using the specifications for compute capability 1.1.

4 Redo the second “interactions between resource limitations” of
this lecture using the specifications for compute capability 1.1.
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