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Abstract

The pseudoflow algorithm for solving the maximum flow and minimum cut problems

was devised in Hochbaum in [13]. The complexity of the algorithm was shown in [13] to be

O(nm log n). In [5] Chandran and Hochbaum demonstrated that the pseudoflow algorithm

is very efficient in practice, and that the highest label version of the algorithm tends to

perform best. Here we improve the running time of the highest label pseudoflow algorithm

to O(n3) using simple data structures and to O(nm log(n2/m)) using the dynamic trees

data structure. Both these algorithms use a new form of DFS implementation that is likely

to be fast in practice as well. In addition, we give a new simpler description of the pseudo-

flow algorithm by relating it to the simplex algorithm as applied to the maximum preflow

problem defined here. The interpretation of the generic pseudoflow algorithm as a simplex-

like algorithm for the maximum preflow problem motivates the pseudoflow algorithm and

highlights differences between the pseudoflow algorithm and the preflow-push algorithm of

Goldberg and Tarjan.
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1 Introduction

The maximum s-t flow or max-flow problem on a directed capacitated graph with two distin-

guished nodes—a source and a sink—is to find the maximum amount of flow that can be sent

from the source to the sink while satisfying flow balance constraints (flow into each node other

than the source and the sink equals the flow out of it) and capacity constraints (the flow on

each arc does not exceed its capacity).

The minimum s-t cut problem, henceforth referred to as the min-cut problem, defined on

the above graph, is to find a bipartition of nodes—one containing the source and the other

containing the sink—such that the sum of capacities of arcs from the source set to the sink

set is minimized. Ford and Fulkerson, in a seminal study [9], established that the maximum

flow value is equal to the minimum cut capacity and demonstrated a primal-dual relationship

between the two problems.

The literature on maximum flow algorithms includes numerous algorithms. Most notable for

efficiency among feasible flow (primal) algorithms is Dinic’s algorithm [7], which has a running

time complexity O(n2m), where n is the number of nodes andm is the number of arcs. Karzanov

[14] and Malhotra et al. [16] independently improved the running time of Dinic’s algorithm to

O(n3). Goldberg and Rao [12] based their algorithm on an extension of Dinic’s algorithm for

unit capacity networks with run time of O(min{n2/3,m1/2}m log(n2/m) logU), where U is the

largest capacity of an arc. This algorithm currently has the best weakly polynomial running

time for the maximum flow problem. Goldberg and Tarjan’s push-relabel algorithm works with

preflows, i.e., flows that permit excesses. (In principle, it could also be implemented to work

with pseudoflows, which are flows that permit both excesses and deficits.) The push-relabel

algorithm with dynamic trees implementation [17] has complexity of O(mn log n2

m ), [11]. Using

a different approach King et al. [15] devised an algorithm of complexity O(mn logm/(n logn) n).

This algorithm currently has the best strongly polynomial running time for the maximum flow

problem.

Hochbaum [13] developed the pseudoflow algorithm for solving the maximum flow and

minimum cut problems. As indicated by its name, the algorithm maintained pseudoflows at

each iteration. However, in this paper, the pseudoflow algorithm always maintains a preflow.

The complexity of the pseudoflow algorithm was shown in [13] to be O(nm log n) using the

dynamic trees data structure [17]. A highest label version of the algorithm was shown to have
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the same complexity in [13].

Goldberg and Tarjan’s push-relabel algorithm has been considered extremely efficient in

practice on standard benchmark instances (see [1, 3, 6, 10]). The highest level variant of the

push-relabel algorithm was found to have the best performance in practice at the time (see [10]

and page 242 of [2]).

In [5], Chandran and Hochbaum showed that their best implementation of the pseudoflow

algorithm is approximately a factor two faster than the best implementation of push-relabel

on the standard benchmark instances. The highest label version of the pseudoflow algorithm

performed best in practice. Boykov and Kolmogorov’s algorithm was reported in [4] to perform

better than the push-relabel algorithm for benchmark instances of vision problems. More

recently, Fishbain et al. [8] presented an extensive study of the performance of various max-

flow min-cut algorithms for vision problems, and demonstrated that Hochbaum’s pseudoflow

algorithm (HPF) is faster in practice than both Boykov and Kolmogorov’s algorithm and the

push-relabel algorithm [8].

We show here that a highest label-DFS (Depth-First-Search) version of the pseudoflow

algorithm runs in O(n3) time. Moreover, the running time of the algorithm can be improved

to O(nm log(n2/m)) using the dynamic trees data structure. We refer to these two algorithms

as the DFS algorithm and the DT algorithm, respectively.

In addition to new complexity bounds, we give here a new and simpler description of the

pseudoflow algorithm. We define the maximum preflow problem, which is to find a feasible

preflow that maximizes that total amount reaching the sink of the graph. We then relate the

pseudoflow algorithm’s tree structure, maintained at each iteration, to a basic feasible solution

maintained by a simplex algorithm applied to the maximum preflow problem. This description

simplifies the presentation of the pseudoflow algorithm while simultaneously highlighting the

distinctions between the pseudoflow algorithm and two other fundamental algorithms: the

simplex algorithm for linear programming and the preflow-push algorithm of Goldberg and

Tarjan [11].

In Section 2, we give definitions and preliminaries and properties of the maximum preflow

problem. In Section 3, we present the pseudoflow algorithm by describing it as a simplex-like

algorithm for the maximum preflow problem in that it moves from one basic solution to another

(but not necessarily an adjacent basic solution). In Section 4, we show how to speed up the

highest label push version of the pseudoflow algorithm so that it runs in O(n3) time. In Section
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5, we show how to further modify the highest label push variant of Section 4 using the dynamic

trees data structure so that it runs in O(nm log(n2/m)) time, thus matching the running time

of the preflow-push algorithm of Goldberg and Tarjan [11].

2 Definitions and preliminaries

Let G be a graph (V,A), where the node set V has n nodes and the arc set A has m arcs. Let t

be a designated sink node. We will define later the maximum preflow problem on G where for

each node i ∈ V \ {t} there is an associated nonnegative supply b(i). For each arc (i, j) ∈ A,

there is an associated finite capacity uij on arc flows. We assume without loss of generality

that there is a directed path from each node to node t. Otherwise, nodes from which there is

no path to t are deleted along with their incident arcs. We also assume that for every pair of

nodes i and j, at most one of the arcs (i, j) and (j, i) is in A – that is, no anti-parallel arcs. This

assumption is used to simplify the description of the residual network (which is defined later)

and to simplify the notation in the paper. However, the algorithms and analysis all extend to

the case in which (i, j) and (j, i) are both permitted to be present.

An undirected path between nodes i and j is often denoted by P (i, j). A path P (i1, ik) is

represented by its sequence of nodes (i1, i2, . . . , ik) so that for j = 1, . . . , k−1 either (ij , ij+1) ∈ A

or (ij+1, ij) ∈ A.

A rooted forest of G is a subgraph that has no undirected cycles, and where each component

of the forest has a designated node referred to as the root node. We make no assumptions on

the directions of the arcs in a rooted forest.

We refer to each component of a rooted forest as a branch. Each branch of a rooted forest

F has exactly one root node. Let root(i) denote the root node in the same branch of F as node

i. If nodes i and j are in the same branch of F , we let PF (i, j) be the unique path in F from

i to j. If nodes i and j are in different branches, then PF (i, j) is undefined. If i is not a root

node, then the parent of node i is the node j that immediately follows node i on P T (i, root(i)).

We also write j = p(i). If j is the parent of node i, then node i is a child of node j. We use

ch(j) to denote the ordered list of children of node j. Its order is from “left” to “right”. For

each root node i, p(i) = ∅.

We will often use the notation T for a rooted forest. The motivation for this slightly

misleading notation is that the forest may be transformed into a tree by adding a super-root
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node rs connected to all the root nodes of T . In fact, the rooted forests in the maximum preflow

problem (defined soon) correspond to trees in the maximum flow problem.

For a rooted forest T , let Tk be the rooted subtree induced by node k that consists of node

k and all of its descendants in the same branch. We observe that if k is not the root, then Tk is

not a branch. Suppose that each node has a label. (We will define the labels later.) A subtree

of Tk that is rooted at a node k that has label d and that is restricted to only contain nodes of

label d is denoted by T d
k .

For D1, D2 ⊆ V the set of arcs going from D1 to D2 is denoted by (D1, D2). The sum of

the capacities on the arcs from D1 to D2 is denoted as: C(D1, D2) =
∑

i∈D1,j∈D2
uij . A special

case is the bipartition of V into S and S̄ where C(S, S̄) =
∑

i,j:i∈S,j∈S̄ uij . In general, S̄ denotes

the set V \S.

A flow vector f = {fij}(i,j)∈A is said to be feasible if it satisfies

(i) flow balance constraints: for each j ∈ V \{t},
∑

(i,j)∈A fij =
∑

(j,k)∈A fjk (i.e., inflow(j) =

outflow(j)), and

(ii) capacity constraints: for all (i, j) ∈ A, the flow value is between the lower bound and

upper bound capacity of the arc, i.e., 0 ≤ fij ≤ uij .

For a flow vector f = {fij}(i,j)∈A, we let f(D1, D2) =
∑

i∈D1,j∈D2
fij .

To define the maximum preflow problem on a graph G = (V,A) where the set of nodes V

contains a sink node t we introduce the concepts of excess of supply: For a given flow vector

x = {xij}(i,j)∈A, satisfying the capacity constraints, the excess at node i ∈ V \ {t} is

e(i) = ex(i) = b(i) +
∑

(j,i)∈A

xji −
∑

(i,j)∈A

xij

i.e., the excess of i with respect to flow x is b(i) + inflow(i) − outflow(i). We will omit the

reference to x whenever it is self evident.

A flow vector is said to be a feasible preflow if it satisfies the capacity constraints, but could

violate the flow balance constraints with inflow(j) ≥ outflow(j). A preflow of 0 on all arcs is

therefore a feasible solution for the maximum preflow problem.

The maximum preflow problem is to find a feasible preflow x that maximizes the flow

into node t, that is,
∑

(i,t)∈A xit.

Given a feasible preflow, an arc (i, j) ∈ A is said to be saturated if xij = uij . An arc (i, j)

is said to be a residual arc if (i, j) ∈ A and xij < uij or if (j, i) ∈ A and xji > 0. For (i, j) ∈ A,
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the residual capacity of arc (i, j) with respect to the flow x is uxij = uij − xij , and the residual

capacity of the reverse arc (j, i) is uxji = xij . We will also denote the residual capacity of arc

(i, j) as rx(i, j) = uxij . Let A
x denote the set of residual arcs for flow x in G, which are all arcs

or reverse arcs with positive residual capacity. Let Gx = (V,Ax) denote the residual network

with respect to x.

The maximum preflow (max-preflow) problem is closely related to the well-studied maximum

flow (max-flow) problem. In the max-flow problem the objective is to send as much flow as

possible from a source node s to node t while keeping flow at all other nodes balanced. The value

of the maximum flow is then the amount of flow along any cut (B, B̄) for {s} ⊆ B ⊆ V \ {t},

and in particular it is equal to e(t) = f(V \ {t}, {t}). There are reasons that the maximum

preflow problem merits separate attention.

(i) The max-flow problem on a graph G = (V,A) containing a source node s and a sink node

t can be solved by solving two maximum preflow problems. In the first problem, b(s) is

set to a large value, such as b(s) =
∑

(s,j)∈A usj . The solution to this problem determines

a maximum preflow x∗ of value f∗ =
∑

(i,t)∈A x∗it, reaching into t. The maximum flow

value can then be at most f∗. Then the max-preflow problem can be solved again with

b(s) replaced by f∗ and b(i) = 0 for all i ∈ V \ {s, t} achieving a feasible balanced

flow of value f∗. (Theorem 2.1 below establishes the correctness of this approach.) An

alternative second problem is to replace b(i) by e(i) for all i ∈ V \ {s, t}, make s the sink

node rather than t, and set b(t) = 0. Then solve the preflow problem of maximizing the

excess of s along the arcs of the residual graph Gx∗
. (The correctness of this approach

follows from the algorithm of Goldberg and Tarjan [11]. A third possibility is to attain a

feasible balanced flow which is also the maximum flow by employing flow decomposition

for sending the excesses of all nodes of V \ {s, t} back to the source (see e.g., [13] for a

description of flow decomposition in this context.)

(ii) The feasibility problem for the minimum cost flow problem can be represented by a single

max-preflow problem. This is done by adding a sink node t and arcs from all demand

nodes j going to t with capacity ujt = −b(j). The original problem is feasible if there is

a max-preflow in the transformed problem that saturates the arcs adjacent to node t.

The reader is referred to [2] Chapter 7 for additional algorithms that rely on solving a max-

preflow problem first.

A t-cut is a partition of the node set V into subsets S and S̄, where t ∈ S̄. We define the
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preflow capacity of the t-cut (S, S̄) to be C(S, S̄) +
∑

j∈S̄ b(j).

The following theorem is a consequence of the Max-flow Min-cut Theorem of Ford and

Fulkerson for the maximum flow problem [9] as well as in Goldberg and Tarjan [11]. To establish

the correctness of the max-preflow min-cut theorem on the graph G = (V,A), we construct a

corresponding graph Gs = (V ∪ {s}, As) for the max-flow problem. This is done by adding to

G a source node s, adding arcs from s to all nodes i ∈ {j ∈ V | b(j) > 0} of capacity usi = b(i)

and setting all supplies to be 0.

Theorem 2.1 The maximum value of a preflow is equal to the minimum capacity of a t-cut

for the maximum preflow problem.

Proof: Let G = (V,A) be a network for the max-preflow problem and let Gs = (V ∪{s}, As) be

the respective network for the max-flow problem constructed as above. We say that a preflow

x in Gs is s-saturating if every arc out of s is saturated. It is easy to see that there is a 1:1

correspondence between s-saturating preflows in Gs and preflows in G. (The correspondence is

obtained by deleting node s and its incident arcs from Gs.) This correspondence maintains the

value of the flow into node t.

There is also a 1:1 correspondence between s-t cuts in Gs and t-cuts in G. If (S, S̄) is an

s-t cut in Gs, then (S\{s}, S̄) is the corresponding t-cut in G. Moreover, the capacity of the

s-t cut in Gs is equal to the preflow capacity of the corresponding t-cut in G.

We are now ready to establish the theorem. Suppose that a preflow x∗ in Gs is s-saturating

and it maximizes the flow v∗ into node t. Goldberg and Tarjan [11] proved that v∗ is the

capacity of some s-t cut (S∗\{s}, S̄∗). (It is the cut that is induced at the end of Phase 1 of

their algorithm.)

Let x′ be the preflow in G corresponding to x∗. Then its flow into node t is v∗. Moreover,

the correspondence between cuts shows that the capacity of (S∗, S̄∗) is equal to the preflow

capacity of (S∗\{s}, S̄∗). This completes the proof.

3 The pseudoflow algorithm for the maximum preflow problem

In this section, we present the pseudoflow algorithm in a manner that closely parallels the

simplex algorithm for the maximum preflow problem. In particular, the algorithm moves from

one basic solution to another basic solution by modifying flows on paths. But the iterations
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do not correspond to single pivots, and the basic solution following an iteration is not adjacent

in the polytope to the basic solution at the beginning of an iteration. The generic pseudoflow

algorithm runs in O(nm) iterations and in O(n2m) total time.

In this section, we describe first the basic solution construction. We then present the generic

pseudoflow algorithm as in [13] and prove its correctness and complexity. We then present a

version in which the order of the operations is modified slightly and show that it is equivalent to

the generic version. This modified version is the basis of the more efficient algorithms presented

in the following sections.

3.1 Basic preflows

A basis of the max-preflow problem consists of a 4-tuple (T, L, U,R), where (T, L, U) is a

partition of the arc set A, and R is a subset of V . The subset T is a spanning forest; that is, it

contains no cycles (in the undirected sense), and each node either has an endpoint in the arc

set T or is considered a singleton in the forest; L is a subset of arcs whose flows are at their

lower bounds, i.e., 0; U is a subset of arcs whose flows are at their upper bounds; and R is the

subset of root nodes, which contains node t and which has exactly one node per component of

T .

The basic preflow induced by basis (T, L, U,R) is the unique arc flow vector x such that

(i) xij = 0 for (i, j) ∈ L,

(ii) xij = uij for (i, j) ∈ U , and

(iii) e(i) = 0 for i /∈ R.

A basic preflow is feasible if it satisfies 0 ≤ xij ≤ uij for all (i, j) ∈ T and if e(i) ≥ 0 for all

i ∈ R.

Each component of T in a given basis 4-tuple (T,L, U,R) is a branch that contains a unique

root node. Singleton components are branches that consist of the root of the branch only.

The algorithm will initialize with the basic feasible preflow constructed by letting T = ∅, L =

A,U = ∅, and R = V . In this initial preflow, all branches are singletons, and e(i) = b(i) for

each i ∈ V \{t}.
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3.2 The generic pseudoflow algorithm

An elementary procedure for sending flow on an arc (i, j) is Push(x, i, j). This operation applies

to arcs in T and to an out-of-tree arc that will serve as a “merger arc”. Let x be the current

flow vector on network G.

procedure Push(x, i, j)

begin

send q := min{e(i), rx(i, j)} units of flow on (i, j);

{update excess and the flow vector}:

e(i) := e(i)− q, e(j) := e(j) + q;

if ((i, j) ∈ A) then xij := xij + q;

else xij := xij − q;

end if

if (q = rx(i, j)) then

delete (i, j) from T ; {split i and j}

add node i to R;

return saturating;

else return nonsaturating;

end if

end

If the flow q sent on (i, j) is rx(i, j), we say that the push is saturating. Otherwise, we say

that it is nonsaturating. In the generic algorithm, if Push(x, i, j) is saturating, then i becomes

a root of a branch.

Let x be a basic feasible preflow. For each node i ∈ V , there is a distance label d(i) satisfying

the following:

Distance conditions:

(i) d(t) = 0;

(ii) for all (i, j) ∈ Ax, d(i) ≤ d(j) + 1;

(iii) if i /∈ R, then d(i) ≥ d(p(i)) (referred to as monotonicity).

Because of the monotonicity, for each branch rooted at i ∈ R, the set of nodes in Ti of label

d = d(i) form a connected subtree in Ti, which is denoted by T d
i . To see that T d

i is connected,
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note that otherwise there is a path from i to a descendant j of label d with an intermediate

node of distance label greater than d. But this violates the monotonicity along such path that

requires that labels can only go up with the distance from i.

An arc (i, j) ∈ T is called neutral if d(i) = d(j). A path in T is called neutral if every arc on

the path is neutral. Whenever we refer to a neutral arc, we are referring to an arc of T . An arc

(i, j) ∈ Ax is called admissible if d(i) = d(j)+ 1. A node i is called active if i ̸= t, e(i) > 0, and

d(i) < n. We say that an arc (i, j) is scanned if it has been checked for admissibility, i.e., for

whether d(i) = d(j)+ 1, since the last time that the distance label of node i was increased. We

say that a node i is scanned if all residual arcs that originate at i are scanned. A node i of label

d is said to be d-visited if i has been scanned and it is determined that there is no admissible

arc originating at i.

Let i be an active root node. An arc (j, j′) /∈ T is called a merger arc with respect to node

i if the following are true:

(i) root(j) = i;

(ii) the path P T (j, i) is neutral;

(iii) (j, j′) is admissible; we denote the set of merger arcs with respect to node i as WRT(i).

We are now prepared to describe the generic Pseudoflow Algorithm. Let x = {xij}(i,j)∈A
denote the flow vector in the network.

The Generic Pseudoflow Algorithm

begin

{initialize with a basic feasible preflow}:

∀(i, j) ∈ A, xij = 0;

T = ∅, L = A,U = ∅, R = V ;

{In the following (T, L, U,R) will be maintained implicitly}

set d(t) = 0 and d(i) = 1 for all i ∈ V \ {t};

while (there is an active root node) do

select an active root node i;

if (WRT(i) = ∅) then {there is no merger arc with respect to node i}

let T
d(i)
i be the set of nodes connected to node i by a neutral path in Ti;

{relabel}:

for (all j in T
d(i)
i ) do
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d(j) := d(j) + 1;

end for

else {there is a merger arc with respect to node i}

let (j, j′) ∈ WRT(i);

{invert}:

for (each residual arc (v, w) on the path from rj := root(j) to j) do

p(v) := w;

end for

{merge} p(j) := j′; {add (j, j′) to T}

{now root(j) = root(j′)}

{PushPath}:

for (each residual arc (v, w) on the path from rj to root(j′)) do

isSaturating := Push(x, v, w);

if (isSaturating = saturating) then

p(v) = ∅; {set node v as a root}

end if

end for

end if

end while

output x as a feasible basic preflow and its corresponding basis (T, L, U,R);

end

In Figure 1, the major operations of merger, inversion, PushPath with Push(x, v, w) satu-

rating, are illustrated. In (b), j becomes the ancestor of all nodes of Trj in (a), w is the parent

of v, and rj is the descendant of v, w and j. Trj in (a) is now part of Tr′j
in (b) rooted at rj′ .

In (b), the unique path from j to rj is given in three sections, the path pw from j to w; arc

(w, v) and the path pv from v to rj .

3.3 Correctness and complexity of the generic pseudoflow algorithm

Theorem 3.1 The generic pseudoflow algorithm solves the maximum preflow problem in O(nm)

iterations and O(n2m) total time.
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Figure 1: (a) Branches prior to merger on arc (j, j′) (b) The invert process (c) Pushing flow

along the path from rj to r′j where Push(x, v, w) is saturating.

Proof: To verify correctness, we claim first that the distance conditions are satisfied after

each call to PushPath. The distance conditions may be affected by the inversion process and

by relabeling. The inversion procedure maintains the validity of the distance labels since the

section of the path that is inverted consists of neutral arcs (of equal labels). After merger with

the arc (j, j′), p(j) = j′ and d(j) = d(j′) + 1. In particular, monotonicity is retained.

Relabeling occurs if there are no merger arcs with respect to node i. In that case, there are

no admissible arcs out of T
d(i)
i , and the distance conditions are satisfied after the relabeling.

When the algorithm terminates, there are no active nodes, although it is possible that there

are nodes at level n that have excess. Let S = ∪{i|e(i)>0}Ti. Then by [13], the set S is the

source set of a minimum cut and the preflow is therefore maximum. (It is further shown in [13]

that S is also a minimal source set of a minimum cut.) To establish this in a self-contained

proof, we use the construction in Theorem 2.1 of the graph Gs. Nodes that have positive excess

in G, V + = {i | e(i) > 0}, have in the graph Gs positive flows on the respective arcs from

s, ({s}, V +). Therefore all residual arcs in (V +, {s}) have positive residual capacity, and the

nodes in V + ∩ S can send their excess back to s along these arcs. This leaves the flow on the

cut arcs (S, S̄) unchanged and thus still saturated. Also, the amount of flow reaching t does not

change. From Theorem 2.1 the cut (S, S̄) is minimum in G and thus the preflow corresponding

to it is maximum.
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To establish the complexity, we show that the work to find merger arcs, across all iterations,

is O(nm); that the complexity of relabeling, across all iterations, is O(n2); and finally, that the

number of iterations is O(nm) and the pushing flow work per iteration is O(n).

The complexity of finding merger arcs per node is the work for scanning the node’s neighbor

list. Per given label of a node, this complexity is the number of outgoing arcs from the node,

i.e., the outdegree of the node, in the residual graph. Since the sum of outdegrees of all nodes

is O(m) and the number of possible labels is O(n), it follows that the complexity of finding

merger arcs is O(nm).

Since labels of nodes can only increase and labels are bounded by n, each node can be

relabeled O(n) times and the complexity of relabeling is O(n2).

In every while -iteration, there is exactly one merger execution. We will show that each

arc (u, v) can become a merger arc O(n) times, at most one time for every distance label that u

can have. To evaluate the number of merger iterations, we recall that if (u, v) is a merger arc,

then it is admissible and k = d(u) = d(v)+ 1. There are two cases to consider: one is when the

push on the merger arc is saturating and the second when it is nonsaturating.

1. Push(x, u, v) saturating: Arc (u, v) then becomes out-of-tree and residual in the direction

(v, u). Once the arc left the tree it can join again only as a merger arc in the direction

that has positive residual capacity. In order for (v, u) to become a merger arc, it must be

true that d(v) = d(u) + 1 ≥ k + 1. Therefore the label of v must increase by at least two

units, from k − 1 to k + 1 before (v, u) can serve as merger arc.

2. Push(x, u, v) nonsaturating: Arc (u, v) is then in the tree T following the merger, and

needs to leave the tree before it can serve as merger arc again. Thus there must be a

saturating push on (u, v) before it can leave the tree. This is then the case of Push(x, u, v)

saturating.

We conclude that (u, v) can only serve as merger arc at most O(n) times and the total

number of merger iterations is O(nm).

During each iteration, the call to invert and PushPath can be carried out in O(n) time, for

a total running time of O(n2m). All other steps are bounded in time by O(nm). Thus the

complexity of the algorithm is O(n2m) as claimed.

At a micro level, the pseudoflow algorithm would be a special case of the preflow-push

algorithm of Goldberg-Tarjan except for one important detail. The pseudoflow algorithm sends

flow on the arcs in P T (rj , root(j
′)), and many of these arcs are neutral. In the preflow-push
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algorithm, all flow is sent only on (non-neutral) arcs (i, j) in which d(i) = d(j) + 1.

Chandran and Hochbaum [5] showed that the pseudoflow algorithm is faster empirically

than the preflow-push algorithm. We conjecture that the flexibility to send flow on neutral arcs

is important, and leads to an overall speedup of the algorithm.

3.4 An equivalent down-up version of the generic algorithm
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Figure 2: (a) Branches prior to merger on arc (j, j′) (b) PushPath-down on the path from rj

to j encounters first saturating push, Push(v, w) saturating (c) v becomes a root node and the

path section Pv from rj to v is inverted. Pushing flow continues from w.

A minor variant in the generic algorithm is to delay the inversion until either the push on

the admissible path is complete, or else there is a saturating push. This means that for a merger

arc (j, j′) the process of pushing on the path from rj = root(j) to j is in the down direction in

the branch Trj , whereas the push on the portion from j to j′ and subsequently to rj′ = root(j′)

is done in the up direction. The reason for noting that this down-up version is equivalent to

the generic algorithm is that it makes a difference in the DFS variant of the algorithm, by

preserving the “down” direction. In the DFS variant subsequent pushes are executed in the

down direction only, while delaying the pushes in the up direction to the end of a “phase”.

The down-up generic algorithm is illustrated in Figure 2. In (b), J indicates all descendants

of v other than Tw, i.e., J = (Tv \ {v}) \ Tw. The complexity of this down-up version is the

same as that of the generic algorithm.
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4 A speed-up for the highest label DFS variant - the DFS al-

gorithm

In this section, we consider the variant of the pseudoflow algorithm in which we always select an

active node whose distance label is maximum. If implemented in a straightforward manner, this

variant has a worst case running time of O(n2m), which is the same as the generic pseudoflow

algorithm. In order to speed it up to O(n3), we make several changes to the down-up generic

algorithm. One change is that we skip the inversion following a saturating push resulting in

excess at intermediate stages being stored at nonroot nodes. A second change is a modification

of the down-up generic algorithm in which PushPath-down is executed repeatedly (and without

inverting) while postponing the process of pushing the flow further, PushPath-up in the generic

algorithm. This postponement is called delayed normalization in [13]. In this implementation,

at intermediate stages, the set of arcs T may not correspond to the basic arcs of a basic preflow.

Further changes are in the implementation of the search for merger arcs and the pushing of the

flow jointly within a DFS process. These are described below in detail.

A “phase” consists of a series of pushes, where pushes originate from active nodes at the

highest distance label (also referred to as level), which we denote here as d′. A phase ends when

the highest level of an active node is no longer d′. A phase d′ consists of two parts.

The first part of phase d′ is called PushDown(d′). We seek out merger arcs (j, j′) where

root(j) is an active node at level d′ and j is at level d′ as well. When locating a merger arc

(j, j′), we push flow from root(j) to j and then push flow on (j, j′). Unlike the generic down-up

algorithm, Push(x, v, w) saturating is not followed by inversion of the component containing v,

and consequently v has positive excess while being a nonroot node (see Figure 3(c)). Secondly,

we do not push flow from node j′ to its root rj′ until the next part of the phase. This possibly

leaves j′ as a nonroot node with positive excess. We continue PushDown(d′) until there are no

more merger arcs originating at level d′. At termination of PushDown(d′), there are two types

of nodes that are nonroot nodes with excess. The level of one type of nodes is d′. All these

d′-level nodes were relabeled at termination of PushDown(d′). The other type of nodes are all

at level d′ − 1. All these (d′ − 1)-level nodes were heads of merger arcs during PushDown(d′).

The algorithm is illustrated in Figure 3, where J in Figure 3(c) indicates the descendants of v

other than Tw.

The second part of phase d′ is called FinalPush(d′). During FinalPush(d′), we push flow from
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nonroot nodes (at level d′−1) with positive excess until all excess resides entirely at root nodes.
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Figure 3: (a) Branches prior to merger on arc (j, j′) (b) PushPath on the path from rj to j

encounters first saturating push, Push(v, w) saturating (c) DFS continues from node w and v

is a nonroot with excess. w is now root(j) and it has positive excess.

In PushDown(d′), we use Depth First Search (DFS) order while searching for a merger arc.

However, once a node has been d′-visited, we immediately push flow to its child, even if a

merger arc is ultimately not found in that subtree. Likewise, the process of backtracking is

accompanied by pushing excess back from a node to its parent. The relabeling of nodes is

integrated with the DFS process.

We are now ready to describe the detailed implementation of DFS in PushDown(d′) for d′

the highest label of an active (root) node. Let the set of active root nodes of highest label d′

be {r1, . . . , rℓ}. We arrange this set in a DFS list in LIFO order as List = (r1, . . . , rℓ), where

r1 is the top element in List.

Let V (d′) be the set of nodes that are labeled d′ and that are active or have as root an active

node of label d′. Let T (d′) be the set of the neutral arcs within V (d′). Thus T (d′) forms a forest

that contains subtrees of all the active branches with roots of label d′. For any node j, we use

chd′(j) ⊆ ch(j) to denote the ordered list of child node i of j such that (j, i) ∈ T (d′). Although

T (d′) remains a forest throughout phase d′, the set of nodes in V (d′) is shrinking as nodes get

relabeled. A node can get relabeled only if it is a leaf of the forest T (d′). A leaf node that has

been d′-visited and has children only of label d′ + 1 is relabeled. This restriction on relabels

ensures that the monotonicity of the distance labels is satisfied throughout the algorithm, and

the intersection of each branch of T with the forest T (d′) is a connected component.
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Let N(j) be a pointer to the next unscanned out-of-tree arc originating at j. If all such

arcs have been scanned, then N(j) = ∅ and j is d′-visited. In this case, there is no need to scan

node j again while its label is still d′. The value of N(j) is reset to the first neighbor on the

list whenever node j is relabeled.

During PushDown(d′), for Push(x, v, w) saturating it is w that is becoming a root node in

R, as in Figure 3(c), unlike the generic algorithm. That leaves node v with nonnegative excess

as a nonroot node, and v remains on List if its excess is positive and w is added to List in the

first position. That is, w serves as next node to be processed in the DFS procedure.

The only inversion that takes place in the DFS algorithm is when there is a nonsaturating

push on a merger arc (j, j′) and the nodes in the branch containing j join the branch rooted at

root(j′). In that case, the path between node j and root(j) is inverted.

Throughout the algorithm, List contains all active nodes of V (d′)–that is, all positive excess

nodes of label d′ are in List. Operation TopL(List) picks the top node on List but does not

remove it from List, while operation PopL(List) picks the top node on List and removes it from

List. Operation PushL(i) adds node i to the top on List (LIFO order). Before the first call to

phase d′ all nodes j ∈ V (d′) satisfy N(j) ̸= ∅ (they are d′-unvisited at this phase).

Let List:= (r1, . . . , rℓ) initially. List is a global data structure throughout the procedure.

procedure PushDown(d′)

begin

if (List ̸= ∅) then

j :=TopL(List); {excess e(j) > 0}

if (N(j) ̸= ∅ and there is a merger arc (j, j′) originating at j) then

isSaturating := Push(x, j, j′);

if (isSaturating = saturating and e(j) > 0) then

{do nothing, node j is still on List and node j′ is a nonroot node with excess}

else

PopL(List); {remove node j from List}

{invert}:

for (each residual arc (v, w) on the path from root(j) to j) do

p(v) := w;

end for

{merge} p(j) := j′; {add (j, j′) to T}
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end if

PushDown(d′);

else {j is d′-visited and excess is pushed down to a descendant of j}

for (each child of j: i ∈ chd′(j)) do

isSaturating := Push(x, j, i);

if (e(j) = 0) then

PopL(List); {remove node j from List}

end if

PushL(i); {add node i on List}

if (isSaturating = saturating) then

p(i) := ∅; {set node i as a root}

end if

PushDown(d′);

end for

{backtracking}:

{relabel}:

d(j) := d(j) + 1;

if (j = TopL(List)) then

PopL(List); {remove node j from List}

end if

{return excess to parent}:

if (p(j) ̸= ∅) then

isSaturating := Push(x, j, p(j));

PushL(p(j)); {add node p(j) on List}

if (isSaturating = saturating) then

p(j) := ∅; {set node j as a root}

end if

end if

end if

end if

end
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When PushDown(d′) terminates, there are some active nodes of label d′ + 1 but no merger

arcs with respect to these nodes; there are no active nodes of label d′; and there are nonroot

nodes with excess that have label d′ − 1.

We note that in every call to PushDown(d′), we process each arc of T (d′) at most twice:

Once in the forward DFS involving a push in the downward direction from a node to its child;

the second time an arc is processed is in the backtrack process where the excess is pushed

back to the node’s parent (unless the node is a root). The backtrack push from node i to p(i)

is associated with node i being relabeled d′ + 1 and consequently removed from V (d′). Once

the invert process takes place, all these relabeled nodes, and their subtrees in T (d′) have been

removed from V (d′) as they are no longer in a subtree rooted in an excess node of label d′.

In the procedure FinalPush(d′) excess is pushed from the nonroot nodes with excess, each

of which necessarily has the label d′ − 1, to their respective roots. We are interested in the

subtrees of T in which all the leaves are nonroot nodes with positive excess. The set of these

subtrees is W (d′− 1) = {v : v is in a branch containing an active nonroot node j′ of label d′− 1

and v is on the path from j′ to root(j′)}. We note that for all v ∈ W (d′ − 1), d(v) ≤ d′ − 1

because of the monotonicity.

In this procedure we refer to “reverse topological order” in a rooted tree as the topological

order that enforces a label of a node v to be less than that of its parent p(v):

procedure FinalPush(d′)

begin

order the nodes of W (d′ − 1) in reverse topological order;

for (each node v in W (d′ − 1) (taken in the reverse order) such that v /∈ R) do

isSaturating := Push(x, v, p(v));

if (isSaturating = saturating) then

p(v) := ∅; {set node v as a root}

end if

end for

end

We now describe the O(n3) version of the pseudoflow algorithm.
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Algorithm Highest Label DFS Pseudoflow

begin

Initialize();

while (there are any active nodes) do

let d′ be the highest label of an active node;

{let r1, . . . , rℓ be the initial active d′-labeled root nodes}

initialize List as List:= (r1, . . . , rℓ);

for (each node j ∈ V ) do

set N(j) to the first unscanned out-of-tree arc originating at j;

end for

PushDown(d′);

FinalPush(d′);

end while

end

The procedure Initialize() creates the initial data structures as well as the initial basis. This

includes setting the preflow values to be equal to 0 on all arcs. The branches are then all

singletons and each node is a root of its own branch. The nodes with excess are those that have

positive supply. The distance labels of nodes in V \{t} are set to 1.

Theorem 4.1 The highest label DFS pseudoflow algorithm solves the maximum preflow prob-

lem in O(n3) time.

Proof: As in the generic pseudoflow algorithm and the proof of Theorem 3.1, the procedure

Highest Label DFS Pseudoflow terminates when there are no active nodes, that is, all nodes in

V \{t} with positive excess have a distance label of n. In this case, it ends with a maximum

preflow and a minimum cut.

To establish the complexity, we first bound the number of phases, as was done in [11]. We

separate phases into increasing phases, in which the maximum distance label d′ increases after

the phase, and decreasing phases, in which d′ decreases after the phase. The latter happens when

all branches with active roots labeled d′ were merged into other branches (no split occurred in

the final Pushdown phase.) The number of increasing phases is O(n2), and the total increase in

d′ following these phases is also O(n2). Thus, the total decrease in d′ subsequent to decreasing
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phases is O(n2), and so the number of such phases is O(n2). Thus the number of phases is

O(n2).

We next bound the time spent in each phase. FinalPush(d′) consists of O(n) pushes and

runs in O(n) time. Thus, the total time spent in all phases on FinalPush is O(n3).

As before the total time spent in all phases on finding merger arcs is at most O(mn). Also,

similar to the complexity of relabeling in the generic algorithm, there are up to n values for d′.

Therefore the total time spent in all phases on relabel is O(n2). All we need to show now is

that the time for PushDown(d′) is O(n) per phase.

Claim 4.1 The complexity of PushDown(d′), excluding finding merger arcs, is O(n) per phase.

More precisely:

(i) Each arc gets excess pushed from parent to child at most once per phase;

(ii) Each arc gets excess returned to parent from child at most once per phase;

(iii) Each arc is inverted at most once per phase;

(iv) Each node is relabeled at most once.

Proof: During PushDown(d′), an arc (j, i) can be visited at most twice in the DFS process

and once in the invert process. The first time, j is selected as an active node on List and i is

the next child of j in chd′(j). In that case the push is in the downwards direction. If the push

is saturated, then arc (j, i) is removed from T and from T (d′) and will not be included in any

subsequent T (d′).

The second time that arc (j, i) is visited is in the backtrack process where node i is a leaf in

the DFS tree (indicated by having no children in T (d′)). In that case node i gets relabeled and

then returns its excess to its parent, j = p(i). The arc (j, i) therefore cannot participate again

in T (d′) in any subsequent phase - the label of i is d′ + 1 and hence (j, i) is no longer neutral

for d′.

The only other form of processing arcs is in the invert process. This happens when a merger

arc (j, j′) is found and r(j, j′) ≥ e(j). In that case, the entire branch rooted at root(j) joins

the branch rooted at root(j′) and no longer participates in this phase’s PushDown(d′).

With the claim, we thus established that the total run time of the highest label DFS algo-

rithm consists of:

O(n3) for all calls to FinalPush,
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O(nm) for finding mergers in all calls to PushDown,

O(n2) for all calls to Relabel, and

O(n3) for all calls to PushDown, excluding finding mergers.

The total is therefore O(n3) as claimed.

5 An O(nm log(n2/m)) implementation of the DFS algorithm –

the DT algorithm

In this section, we describe a dynamic tree implementation of the DFS algorithm of the previous

section that runs in O(nm log(n2/m)) time. We call this algorithm the DT algorithm, where

DT stands for Dynamic Trees.

The dynamic trees data structure was developed by Sleator and Tarjan [17]. They used this

data structure to develop an O(nm log n) algorithm for the maximum flow problem. Goldberg

and Tarjan [11] showed how to use the dynamic trees data structure to speed up the preflow-

push algorithm for the maximum flow problem to O(nm log(n2/m)) time. Our approach follows

similar reasoning; however, as is typical with dynamic tree algorithms, there are a number of

technical details that need to be worked out in order to achieve this running time.

Dynamic trees rely on partitioning the arcs of a tree into subtrees. In order to clearly

differentiate the subtrees of dynamic trees from branches, we will refer to them as D-trees.

Each D-tree has a special node called the D-root. In our implementation of the dynamic trees

data structure, each root node of T will be a D-root of a dynamic tree, but the converse is not

true. All nodes in one D-tree are required to have the same label. We let D-root(j) denote the

root of the D-tree containing node j. Each D-tree is a connected subgraph of T .

With the dynamic trees implementation, the main distinction compared to the DFS algo-

rithm is that we keep track of d′-visited nodes throughout all phase calls with label d′ so they

are skipped over. This is done with the help of a flag, which is set to 0 initially, and to 1 when

N(j) = ∅ (d′-visited). In the DFS algorithm d′-visited nodes can be visited again in subsequent

calls to phase d′ only to verify that they are d′-visited. This can result in additional run time

of O(n) per phase. In contrast, the DT algorithm skips over such nodes. The skip is triggered

once the top node on List is found to be flagged as d′-visited. In that case, the skip operation

is to proceed from node i to unvisitedd′(i), defined to be a left-most descendant of i that has

flagd′ value 0 and hence has not been visited.
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The total work for PushDown is O(mn) for pushing down on arcs and backtracking and

scanning for all merger arcs. Each D-tree will have at most q nodes. We refer to a D-tree as

large if it has at least q/2 nodes, and refer to it as small otherwise. Thus, there are at most

2m/n large D-trees at any time. With the push-down and backtrack operations, we will also

include an update of the dynamic trees to ensure that most of them are large, and that will

require a complexity of O(log q) per operation. This, plus the complexity of the skips and the

inversions will be shown to have total complexity of O(mn log q).

For FinalPush, the main challenge in adapting the DFS version to the DT version is in the

reverse topological order in which the nonroot excess nodes are processed. This requires setting

the topological order on D-roots of the respective D-trees.

For each node j of the D-tree that is not a D-root, we let Value-up(j) be the residual

capacity rx(j, p(j)). If node j is a D-root, then Value-up(j) = ∞. Similarly, we let Value-

down(j, i) (i ∈ ch(j)) be the residual capacity rx(j, i). Note that Value-up(j) is associated with

a node j and its unique path to an ancestor, while Value-down(j, i) is associated with the arc

from a node j to one of its children i. If node j is a leaf of a D-tree, then Value-down(j, ∅) = ∞.

For each node j, we let size(j) denote the number of nodes in the D-tree containing node j.

For each node j we have a second value, flagd′(j), which assumes the value 0 if node j has

not completely been scanned for admissible arcs at phase d′, i.e., N(j) ̸= ∅, and the value 1 if

node j is d′-visited, i.e., N(j) = ∅. Each node j has the value, flag-DTd′(j), which is 0 if node

j has a descendant i (i can be equal to j), contained in the same D-tree, with flagd′(i) = 0.

Thus flag-DTd′(D-root)= 1 if all nodes in the D-tree rooted at D-root have been d′-visited, and

equals 0 otherwise. One more label value associated with each node is unvisitedd′(j). This is

a label of node j with flag-DTd′(j) = 0 indicating a descendant i of node j that is the closest

to j in the same D-tree with flagd′(i) = 0. If flagd′(j) = 0, then this label is j; else, it is a

left-most descendant i of j such that all nodes on the path from p(i) to j have flag value 1 and

flagd′(i) = 0. It is shown in the Appendix that this label is maintained with constant number

of dynamic tree operations per update.

Dynamic trees support various operations. We adapt these operations and present them in

the context used here. One basic operation, find-minvalue(j), finds the minimum value of a

node on the path in T from j to D-root(j). This operation is omitted from the list of operations

since it is not used here. On the other hand, operations such as find-first-down(i, w, val) do

not appear explicitly on the list of basic operations, but can be shown (as was shown e.g.,
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in [13]) to be a dynamic tree operation that can be implemented, on a D-tree of size q, in

O(log q) complexity. All of the operations below are either part of the original dynamic trees

data structure, or can be implemented in a straightforward manner using dynamic trees.

(i) D-root(j). Finds the D-root of the D-tree containing node j.

(ii) Find-first-up(i, w, val). Finds a node j on the path from i to w (that could be its D-

root(i)) that is closest to node i and such that Value-up(j) ≤ val, or returns w otherwise.

(iii) Find-first-down(i, w, val). Finds the node j on the path from i to w in D-tree(i) that is

closest to node i and such that Value-down(j, c(j)) ≤ val, where c(j) is the unique child

of j on the path, or returns w otherwise.

(iv) FindSize(j). Returns size(j).

(v) AddValue(i, w, val). Adds the real number val to the flows of all residual arcs (j, j′)

on the path in T from node i to node w, and updates Value-up and Value-down for all

internal nodes of the path by subtracting or adding the value of val: If i is a descendant

of w, then Value-up of (i) and all internal nodes is reduced by val and Value-down of arc

(w, c(w)) and of all the internal arcs is increased by val. The subroutine simultaneously

decreases e(i) by val and increases e(w) by val. The case when i is an ancestor of w is

analogous.

(vi) Link(i, j). This operation assumes that i and j belong to two different D-trees. It merges

the D-tree containing node i with the D-tree containing node j, lets p(i) = j, and sets

the root of the merged tree to D-root(j). It sets Value-up(i) to rx(i, j).

(vii) Cut(j). This operation breaks the D-tree containing node j into two D-trees by deleting

the arc (j, p(j)). Node j becomes the D-root of its tree.

(viii) Invert(j). This operation takes the D-tree rooted at D-root(j), and roots it at j instead.

Consequently the parent-child relationship on the path from D-root(j) to j is inverted.

The dynamic trees data structure stores the residual capacities of arcs in the D-trees im-

plicitly. However, if nodes i and j are in different D-trees, then rx(i, j) is explicitly maintained.

The following theorem was proved by Sleator and Tarjan [17].

Theorem 5.1 For D-trees of size O(q), the running time of each D-tree operation is O(log q)

in an amortized sense. That is, over a sequence of K > n consecutive operations on the D-trees,

the running time is O(K log q).
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During the DFS process of scanning for merger arcs, there are no dynamic tree operations

involved. Thus each arc (p(j), j) traversed during the DFS search operation will be cut by

calling for Cut(j) prior to pushing flow on it. After node j has been fully scanned, it is assigned

the flag value of 1; in addition, there will be a Link(j, p(j)) operation if the sum of the sizes of

the two D-trees containing j and p(j) is less than or equal to q. During the backtrack operation

from j to p(j), the arc (j, p(j)) is cut from the D-tree, with operation Cut(j). Node j then has

a label of d′ + 1 whereas d(p(j)) = d′. If node j then has a child in T and if its left-most child

i is in a different D-tree from j, then Link(i, j) is run if the sum of their respective sizes is less

than or equal to q. These dynamic tree operations during the DFS process add O(log q) steps

each. Since each arc is traversed down at most once in DFS and at most once in backtrack per

label d′ (see Claim 4.1), the total complexity added is O(n log q) per arc, or O(mn log q) for all

arcs.

The operations that directly involve the dynamic trees are, first in PushDown(d′): the invert

operation once a merger has been identified; the skip subroutine that skips all d′-visited nodes

along the downwards DFS search path and pushes the flow down from j to the next unvisited

node, unvisitedd′(j). In FinalPush(d′) the operation is that of pushing up flows from nonroot

nodes with excess to their respective roots. All these operations are analogous in the sense

that they use, along the path, only the D-roots of the respective D-trees encountered, except

possibly for the first one, which may not be a D-root.

In order to implement the FinalPush(d′) operations in reverse topological order, we demon-

strate how to construct a so-called auxiliary graph, which represents the tree T but which

involves as nodes only D-roots.

In the remainder of this section, we explain how to modify PushDown(d′) and FinalPush(d′)

so that their running time is O(nm log q) over all iterations.

We first show how to modify PushDown(d′) using the dynamic trees data structure. We

then provide full details on how to modify FinalPush(d′).

5.1 Modifying PushDown(d′)

The major operations of PushDown(d′) involve pushing flow from a parent to child, or returning

excess from a child to a parent. These operations are implemented simply on an arc (p(j), j)

by cutting it first and then performing the push, and then, if no split, merging again the two

D-trees subject to size restriction. In the backtrack to parent, the child node j is relabeled and
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the arc (j, p(j)) is cut, with Cut(j).

When we reach a d′-visited node j in the DFS process, we use the skip operation to proceed

to unvisitedd′(j), a descendant of j that has not been fully scanned yet, and push the flow on

the path from j to unvisitedd′(j). In the next lemma we prove that such a descendant always

exists. In fact, every leaf node is such a descendant.

Lemma 5.1 All leaf nodes in T (d′) are d′-unvisited.

Proof: Consider the DFS algorithm without skips. Once the DFS algorithm reaches a d′-

visited node j (no merger arc from j), it scans the children of j. It then either continues the

DFS process to one of the children of label d′, or else relabels j, removes it from T (d′) and

V (d′), and backs up to a parent. Therefore, a node that is d′-visited cannot be a leaf node.

We add the operation combine(i, j) for arc (i, j) ∈ T when nodes i, j do not belong to

the same D-tree (tested by comparing their respective D-roots). This operation checks if

size(i)+size(j) ≤ q and if so, it calls Link(i, j).

We later show that each D-tree operation, applied to a path of length P , requires no

more than O((P/q) log q) steps, plus an additional complexity of O(mn log q) throughout the

algorithm, for all operations. We first present the DT version of PushDown. Recall that

List:= (r1, . . . , rℓ) initially.

procedure DT-PushDown(d′)

begin

if (List ̸= ∅) then

j :=TopL(List); {excess e(j) > 0}

if (flagd′(j) = 1) then

D-Push-down(j,unvisitedd′(j), e(j));

DT-PushDown(d′);

else

if (there is a merger arc (j, j′) originating at j) then

isSaturating := Push(x, j, j′);

if (isSaturating = saturating and e(j) > 0) then

{do nothing, node j is still on List and node j′ is a nonroot node with excess}

else
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PopL(List); {remove node j from List}

{invert} invert path from root(j) to j;

{merge} p(j) := j′; {add (j, j′) to T} combine(j, j′);

end if

DT-PushDown(d′);

else {j is d′-visited and excess is pushed down to a descendant of j}

flagd′(j) := 1;

for (each child of j: i ∈ chd′(j)) do

if (j and i are in the same D-tree) then

Cut(i);

end if

isSaturating := Push(x, j, i);

if (e(j) = 0) then

PopL(List); {remove node j from List}

end if

PushL(i); {add node i on List}

if (isSaturating = saturating) then

p(i) := ∅; {set node i as a root}

else

combine(j, i);

end if

DT-PushDown(d′);

end for

{backtracking}:

{relabel}:

d(j) := d(j) + 1;

if (j = TopL(List)) then

PopL(List); {remove node j from List}

end if

{return excess to parent}:

if (p(j) ̸= ∅) then

isSaturating := Push(x, j, p(j));
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PushL(p(j)); {add node p(j) on List}

if (isSaturating = saturating and e(j) > 0) then

p(j) := ∅; {set node j as a root}

end if

end if

end if

end if

end if

end

An important pair of routines push flow from a node j with a positive excess e(j), up to a

node (usually an ancestor root node) w along a path in T (implemented as D-Push-up(j, w, e(j))

in the following), or down to a descendant node w along a path in T (implemented as D-Push-

down(j, w, e(j)) in the following).

procedure D-Push-down(j, w, e(j))

begin

if (j ̸= w and j has a child in T and e(j) > 0) then

k :=Find-first-down(j, w, e(j));

if (k = w) then

AddValue(j, w, e(j));

PopL(List); {remove node j from List}

PushL(w); {add node w on List}

else {rx(k, c(k)) ≤ e(j)}

PopL(List); {remove node j from List}

AddValue(j, k, e(j));

Push(x, k, c(k));

p(c(k)) := ∅; {set node c(k) as a root}

{k has excess e(k) = e(j)− rx(k, c(k))}

if (e(k) > 0) then

PushL(k); {add node k on List}

end if
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Cut(c(k));

e(c(k)) := rx(k, c(k));

D-Push-down(c(k), w, e(c(k)));

end if

end if

end

The next procedure is used only in FinalPush(d′) (next section), but its structure is similar

to that of D-Push-down(j, w, e(j)) and is therefore placed here.

procedure D-Push-up(j, w, e(j))

begin

if (j ̸= w and j is not a root of T and e(j) > 0) then

k :=Find-first-up(j, w, e(j));

if (k = w) then

AddValue(j, w, e(j));

else {rx(k, p(k)) ≤ e(j)}

AddValue(j, k, e(k));

Push(x, k, p(k));

p(k) := ∅; {set node k as a root}

{k has excess e(k) = e(j)− rx(k, p(k))}

Cut(k);

e(p(k)) := rx(k, p(k));

D-Push-up(p(k), w, e(p(k)));

end if

end if

end

Throughout the algorithm, all calls to D-Push-down or D-Push-up can create up to O(mn)

new D-trees that are potentially small, that is, of size < q/2. All such created D-trees must

have, by construction, a D-root that belongs to R, the set of roots in T .

The procedures Find-first-up(j, w, e(j)), Find-first-down(j, w, e(j)), AddValue(j, w, e(j)),
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and invert(j) are all built on the respective basic operations on D-trees. We explain next

how to construct these operations along paths that include multiple D-trees. This is shown for

AddValue(j, w, e(j)) (in the up direction) where for the others the implementation is analogous.

In the procedure AddValue, we use the name AddValue-D for the AddValue operation used

within a single D-tree. Every time an out of D-tree arc is processed, from a D-root to its parent,

the combine operation is invoked as well.

procedure AddValue(j, w, e(j))

begin

while (j and w are not in the same D-tree) do

AddValue-D(j,D-root(j), e(j));

i := p(D-root(j));

Push(x, D-root(j), i);

combine(D-root(j), i);

j := i;

end while

AddValue-D(j, w, e(j));

end

The significance of using combine is that it results in a processed part of the tree T that

has on all paths large D-trees at least on every alternate level. The number of additional small

D-trees that are created at the root level is O(mn) throughout the algorithm. The additional

D-trees are created only when there is a split and a node becomes a D-root. Since throughout

the algorithm there are at most O(mn) splits, the number of small D-trees is at most O(mn).

An analogous argument applies for the invert path operation, the AddValue operation and

the find-first-down/up operations. All these take a path of length P that contains at most

O(P/q) D-trees. Each such operation thus runs in at most O((P/q) log q) time per path. This

argument is made formal in the next lemma. For unvisitedd′(j) and therefore the skip operation,

it is shown in the appendix that the same complexity applies also.

Lemma 5.2 The complexity of invert, AddValue and the other operations is O(mn log q) through-

out the algorithm.

Proof: We first consider the application of these operations to a single path of length P .
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Because combine() is integrated into all these operations, it follows that along a path of length

P there are at most O(1 + P/q) D-trees, and this results in O((1 + P/q) log q) time.

Each arc (j, i) has flow sent on it O(1) times when it has a label of d′, thus O(n) times in

total. Thus the sum of the lengths of all paths on which the operations apply is O(nm), and

the number of paths is O(nm). Summing O((1+P/q) log q) over the lengths of all paths results

in a total running time of O(nm log q).

Theorem 5.1 The complexity of DT-PushDown throughout the algorithm is O(mn log(n2/m)).

Proof: For a label d′, each arc is processed at most once in the pushing down of flow and at

most once in the backtracking. Since there are up to n labels the processing of arcs requires

O(mn) throughout. Since we use the Cut and combine operations, these contribute O(mn log q)

complexity.

In each phase, each arc can participate at most once in the skip or invert operations, and

thus at most once in the AddValue and Find-first-down operations. That is because the skip

operation is part of the DFS process during a phase, and once the search has gone down the

tree with the skip operation, the same arcs cannot be skipped again but only backtracked on,

as already accounted for above. For the invert operation, all arcs on the path that is inverted

are then removed from T (d′) and are no longer processed in the current phase. Thus the total

lengths of the paths processed by skip and invert, per phase, is at most O(n).

The skip operation and the other operations can also be invoked at most O(n) times per

phase, and possibly on very short paths. If the paths are of length P > q, then the complexity

per skip is O((P/q) log q). Otherwise the complexity per operation is O(log q).

Since there are O(n2) phases, and the skip and invert operations can process multiple paths

of total length at most n arcs per phase, the total work of these operations is O((n3/q) log q).

Having chosen q = n2/m, this complexity is O(mn log(n2/m)) throughout the entire algorithm.

Adding the complexity of all these operations and that of the pushing down and backtracking

on an arc the complexity is O(mn log(n2/m)). Finding all mergers throughout the algorithm

adds only O(mn) steps.
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5.2 Modifying FinalPush(d′)

The key in constructing the DT analogue of FinalPush(d′) is to process the topological order

final push on D-roots only. In a preprocessing step of DT-FinalPush, all nonroot nodes with

excess (and of label d′− 1) send their excess to their respective D-roots. For each such node j′,

this is done using D-Push-up(j′,D-root(j′), e(j′)). Since nonroot nodes with excess are created

only as result of mergers, and there are O(mn) mergers throughout the algorithm, this process

takes O(mn log q) throughout the algorithm.

We can thus assume that all nonroot nodes with excess are D-roots. We next construct

the auxiliary graph induced on D-root nodes only that contain the D-root nodes with excess,

and all their D-root ancestors. This is the graph on which the reverse topological push will be

processed.

Figure 4(a) is one branch of T after the preprocessing step. The thick black arcs are in

the dynamic tree. The gray arcs are arcs of T that are not in the dynamic tree. Nodes with

no black arc leaving are D-roots. The gray nodes are active. Note that all active nodes are

D-roots. The only D-roots that are not active in the branch are nodes 6 and 9. The only nodes

that are not D-roots are nodes 2, 3 and 7.

We let the set of active D-root nodes created at the preprocessing step be called Ac-

tiveSet. We will be interested in those active D-roots that do not belong to R. We denote

S =ActiveSet\R. The auxiliary graph is the graph of the nodes of S and their D-root ancestors,

on which the reverse topological order is defined.

procedure AuxiliaryGraph(S)

begin

V ′ := S, A := ∅;

for (each node i of S) do

v := i;

while (v is not a root node of T ) do

w :=D-root(p(v));

V ′ := V ′ ∪
{w};

A′ := A′ ∪
{(v, w)};

v := w;

end while
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Figure 4: (a) A branch of T after preprocessing. (b) The auxiliary graph for Figure 4(a).

end for

end

The graph G′ = (V ′, A′) is the auxiliary graph. The auxiliary graph output for the graph

given in Figure 4(a) is depicted in Figure 4(b). In this particular graph only D-roots are present.

5.2.1 DT-FinalPush(d′) and its complexity

We are now ready to present the procedure FinalPush with dynamic trees. Here ActiveSet is

the set of nonroot nodes that are active at the beginning of DT-FinalPush and DRootSet is the

set of all D-roots.

procedure DT-FinalPush(d′)

begin

{Preprocessing}:

for (each node j′ ∈ ActiveSet\DRootSet) do

D-Push-up(j′,D-root(j′), e(j′));

{update ActiveSet} ActiveSet:=ActiveSet\{j′}
∪
{D-root(j′)};

end for
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S := ActiveSet\R;

let G′ = (V ′, A′) be created by AuxiliaryGraph(S);

order the nodes of V ′ in reverse topological order in G′;

for (node j′ ∈ V ′ \R in the reverse topological order) do

Push(x, j′, p(j′));

D-Push-up(p(j′),D-root(p(j′)), e(p(j′)));

combine(j′, p(j′));

end for

end

Theorem 5.2 The complexity of DT-FinalPush throughout the algorithm is O(nm log q).

Proof: As discussed above, the preprocessing step takes O(nm log q) time. The complexity of

the remainder of the algorithm is determined by the number of nodes in V ′. This is because

the creation of the reverse topological order takes O(|V ′|) time, and the Push and D-Push-up

operations take O(log q) per node of V ′.

Because the operation combine is invoked throughout the DT-FinalPush procedure, for every

two consecutive D-trees on a path in T from a node to its root, at least one of the D-trees is

large. Equivalently, in the auxiliary graph G′, for every two consecutive nodes on a path from

a node to a root node, at least one of these two nodes represents a large D-tree, which is of size

at least q/2. Hence, the number of large D-trees in G′ is at most 2n/q and the size of |V ′| is at

most the number of leaves in G′ plus 4n/q.

Every leaf node of G′ is created from a nonroot active node, which is created, in turn, by

a merger operation. Therefore, throughout the algorithm, the total number of leaf nodes in all

auxiliary graphs created is at most O(mn).

Hence, throughout the algorithm and all calls to DT-FinalPush, the total number of nodes

in all auxiliary graphs is at most n2 · 4n/q + mn. Since we choose q = n2/m, this number is

O(mn). The statement of the theorem thus follows.

Now we can describe the complete DT-algorithm.

DT-algorithm
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begin

Initialize();

for (each label d ∈ {1, . . . , n}) do

for (each node j ∈ V ) do

flagd(j) := 0; DT-flagd(j) := 0; unvisitedd(j) := j;

end for

end for

while (there are any active nodes) do

let d′ be the highest label of an active node;

{let r1, . . . , rℓ be the initial active d′-labeled root nodes.}

initialize List as List:= (r1, . . . , rℓ);

DT-PushDown(d′);

DT-FinalPush(d′);

end while

end

We thus conclude that:

Theorem 5.3 The pseudoflow algorithm using dynamic trees, the DT-algorithm, solves the

maximum preflow problem in O(nm log(n2/m)) time.

6 Conclusions

We provide here a unique and new perspective on the pseudoflow algorithm. Two variants of

the algorithm, the DFS variant and the dynamic trees variant, devised here, have complexities

of O(n3) and O(nm log(n2/m)) respectively, improving on previous complexity bounds for the

algorithm. We believe that the algorithmic concepts introduced here will lead to improvements

in running time of maximum flow algorithms not only in theory, but in practice as well.
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Appendix: Dynamic trees maintenance of flagd′(j), DT-flagd′(j)

and unvisitedd′(j) labels

6.1 Overview

The purpose of the unvisitedd′(j) label is to identify a left-most descendant of node j which has

not been d′-visited, in the same D-tree, and that is closest to j, or indicate that such a node

does not exist.

The unvisitedd′(j) label is a pointer to a left-most descendant i of node j with flag-DTd′(j) =

0 and flagd′(i) = 0 that is “closest” to j in the same D-tree among all descendant nodes with

flagd′ value equal to 0. More precisely, if flagd′(j) = 0, then this operation returns j; else, it

returns a left-most descendant i of j, in the same D-tree, such that all nodes on the path from

p(i) to j have flagd′ value 1 and flagd′(i) = 0. We will show that for each label d′, the overhead

for maintaining the labels unvisitedd′(), flagd′() and DT-flagd′() is at most O(m). We also

show that the labels are correctly updated and maintained for each of the following operations

occurring during the DFS process:

1. link

2. invert



38

3. update associated with a node having been d′-visited

4. cut.

Furthermore, the complexity of invert and update operations is dominated by the complexity of

the DT algorithm; and the link and cut operations, that are performed on D-trees, have com-

plexity O(log q) for D-trees on q nodes. Therefore throughout the algorithm their complexity

does not increase the overall complexity of the DT algorithm.

Notations: DT will be used here as an abbreviation of D-tree. The value flagd′(j) = 1

indicates that node j has been d′-visited; DT-flagd′(j) = 1 if node j has no descendant in the

same DT that is d′-unvisited; unvisitedd′(j) is the closest d′-unvisited left-most descendant of

j in the same DT. The value of this label is equal to “nil” if DT-flagd′(j)=1.

The invariant that we maintain during the DFS process is that in each DT, the children of

each node get the label DT-flagd′(i) = 1 from left to right. That is, the list of the children of

node j, in left-to-right order, have the DT-flagd′ labels’ sequence (1, . . . , 1, 0, . . . , 0), where the

left-most child with the label DT-flagd′(i) = 0 is termed the current-child. Notice that some

children of nodes in a DT may belong to other DTs.

The current child of node j in the same DT is denoted by ccd′(j). The child that is next to

(to the right of) ccd′(j) and in the same DT, is denoted by cc+d′(j). If cc
+
d′(j) = nil, then ccd′(j)

is the right-most, and last, child of j in the same DT.

The main DT operation used here is analogous to, and somewhat simpler than, AddValue(i, w, val).

It is ReplaceUnvisited(i, index, d′) (the node w here is always the D-root(i)); replaces the

unvisitedd′ label by index in all unvisitedd′ labels for all nodes v on the path in T from node i

to D-root(i).

A second, and similar, DT operation is ReplaceDT-flag(i, val, d′). It replaces the DT-flagd′

labels of all nodes v on the path in T from node i to D-root(i) by val.

6.2 Link

When two DTs are merged along arc (j, i), it is between a node j in one DT and the D-root i of

the other, so that i becomes a child of j. This is illustrated in Figure 5 where the black nodes

are those that have been d′-visited, with DT-flagd′ value 1, for which all descendants in the same

DT tree have flagd′ value 1 (have been d′-visited). Thus, for black nodes, the unvisitedd′ label

value is “nil”. The other nodes still have d′-unvisited descendants. With the link operation,

node i becomes a child of j positioned to the left of the current-child of j, ccd′(j), (the left-most
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child of j with DT-flagd′ value 0).

i 

CC(i) 

j 

Figure 5: A link operation.

The update of the visited related labels depends on the values of the flagd′ and the DT-flagd′

labels of j and i as follows:

Case (a): DT-flagd′(i) = 1. Here no update is needed and ccd′(j) remains the current child of

j.

Case (b): DT-flagd′(i) = 0. Then ccd′(j) := i.

(b1) If DT-flagd′(j) = 0 and flagd′(j) = 0 (so unvisitedd′(j) = j), then there is no further

update.

(b2) If flagd′(j) = 1 (in which case unvisitedd′(j) ̸= j), then ReplaceUnvisited(j,unvisitedd′(i)).

(b3) If DT-flagd′(j) = 1 (and then flagd′(j) = 1), then ReplaceDT-flag(j, 0, d′).

Each of the DT operations in (b2) and (b3) takes O(log q) steps for a dynamic tree on q

nodes.

6.3 Invert

The invert operation occurs during the algorithm only along a path between a node j and

D-root(j). When invert occurs, then all nodes on the path [D-root(j), . . . , p(j)] must have been

d′-visited and have flagd′ values equal to 1. After the invert, node p(j) becomes a child of j.

Node p(j) is inserted to the left of the current child of j. Also, after the invert operation,

D-root(D-root(j)) = j. Note that prior to the invert, the current child of j may not belong to

the same DT as j.

Let w = ccd′(D-root(j)) prior to the invert operation and w′ = cc+d′(D-root(j)) the next child
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Figure 6: The invert operation.

of D-root(j) (the one to the right of w). After the invert, w becomes the parent of D-root(j)

and w′ becomes the current child of D-root(j), as illustrated in Figure 6. Node p(j) is inserted

as left-most d′-unvisited child of j after the invert, so ccd′(j) := p(j).

The formal update procedure occurring after a inversion is:

procedure update-invert

begin

if (w′ ̸= nil) then {DT-flagd′(w
′) = 0}

ReplaceUnvisited(D-root(j), w′, d′);

{for all i along the path [D-root(j), . . . , j], unvisitedd′(i) := w′}

else

backtrack([D-root(j), . . . , j]);

end if

end

The purpose of backtrack([D-root(j), . . . , j]) is to shift the current child pointer of each node

on the inverted path [D-root(j), . . . , j] to the next child on its right.

procedure backtrack([u, . . .,D-root(u)])

begin
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v := u

while (v ̸= ∅ and cc+d′(v) = nil) do

DT-flagd′(v) := 1;

v := p(v);

end while

if (v ̸= ∅) then

v′ := cc+d′(v);

ReplaceUnvisited(v, v′, d′); {for all z on [v, . . .,D-root(u)], unvisitedd′(z) := v′}

end if

end

The complexity of the backtrack subroutine appears to be linear in the length of the path for

each invert and thus potentially of high complexity throughout the algorithm (for the O(mn)

inverts that occur throughout the algorithm, it would be O(mn2) complexity). However, this

operation is charged to the backtracking of the DFS process and for every label d′, each arc can

be visited at most once in the backtrack process. Thus the total charge for the backtracking is

O(m) per label value, and O(mn) for the entire algorithm.

6.4 Update associated with a node having been d′-visited

A node has been d′-visited when all its neighbors adjacent to admissible arcs haven been

scanned. In this case, flagd′(j) := 1.

procedure update-visited(j)

begin

if (ccd′(j) = nil) then

DT-flagd′(j) := 1;

unvisitedd′(j) := nil;

backtrack([j, . . . ,D-root(j)]);

else

ReplaceUnvisited(j, ccd′(j), d
′);

end if

end
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6.5 Cut

A cut is the partition of a DT obtained by removing arc (i, j), where j = p(i), from the DT.

The following procedure shows how to update the labels of j and its ancestors when arc (i, j)

is removed and i is no longer a child of j in the same DT.

procedure update-cut(i)

begin

if (i ̸= ccd′(j)) then

remove i from the list of children of j in the DT;

else {i = ccd′(j)}

w′ := cc+d′(j);

if (w′ = nil) then

DT-flagd′(j) := 1;

unvisitedd′(j) := nil;

backtrack([j, . . . ,D-root(j)]);

else

ccd′(j) := w′;

ReplaceUnvisited(j, w′, d′);

remove i from the list of children of j in the DT;

end if

end if

end

As before, if the D-tree containing node i is of size q, then the complexity of update-cut is

O(log q).

This completes the proof that the labels can be maintained in time dominated by the

complexity of the main algorithm, O(mn log n2

m ).


