
Dynamically Tuned Push-Relabel Algorithm for the Maximum Flow Problem on
CPU-GPU-Hybrid Platforms

Zhengyu He, Bo Hong
School of Electrical and Computer Engineering

Georgia Institute of Technology
zhengyu.he,bohong@gatech.edu

Abstract—The maximum flow problem is a fundamental
graph theory problem with many important applications. Max-
flow algorithms based on the push-relabel method are known
to have better complexity bound and faster practical execution
speed than others. However, existing push-relabel algorithms
are designed for uniprocessors or parallel processors that
support locking primitives, thus making it very difficult to
apply the push-relabel technique to CUDA-based GPUs. In this
paper, we present a first generic parallel push-relabel algorithm
for CUDA devices. We model the parallelization efficiency of
the algorithm, which reveals that, for a given input graph,
the level of parallelism varies during the execution of the
algorithm. To maximize the execution efficiency, we develop
a dynamically tuned algorithm that utilizes both CPU and
GPU by adaptively switching between the two computing units
during run time. We show that algorithm finds the maximum
flow with O(|V |2|E|) operations (summed over both the CPU
and the GPU). Extensive experimental results show that the
new algorithm is up to 2 times faster than the push-relabel
algorithm by Goldberg et al.

I. INTRODUCTION

The maximum flow (max-flow) problem is a fundamental
graph theory problem with applications in many areas. Over
the years, many algorithms have been developed for this
problem with continuously improving complexity bounds.
The push-relabel algorithm was originally designed for
single-threaded implementations and has the best complexity
bound known so far. It is also a good candidate for paral-
lelization due to its localized data access patterns.

Practical implementations of parallel algorithms have also
been investigated intensively. Anderson and Setubal [1] aug-
mented the push-relabel algorithm with a global relabeling
operation. Bader et al. [2] designed a parallel implemen-
tation using gap relabeling heuristic with considerations in
the cache performance of the push-relabel algorithm. Both
implementations have demonstrated good execution speed.
These parallel implementations, however, share a few com-
mon features that impact the efficiency of the parallelization:

1) Parallel push-relabel algorithms cannot enforce a strict
order (e.g. FIFO or the highest-label-first) when pro-
cessing the vertices. Such orders have been demon-
strated to lower the complexity bound of the algo-
rithms.

2) Extra overheads are associated with the load balancing
mechanism, lock-based critical section contention, and
cache misses due to the invalidation.

As a result, it was observed in [1], [2] that often times the
parallel implementations cannot outperform the sequential
push-relabel algorithm due to Goldberg [3]. To overcome
such limitations and fully exploit the parallelism in the max-
flow problem, an alternative method would be to improve
the scalability of the algorithm so that we can involve a
large number of processors to counteract the impact of paral-
lelization overheads. Towards this objective, we developed a
lock-free push-relabel algorithm in [4] that aims at releasing
the processors from critical section contention and assuring
the independence of the computation tasks. The algorithm
allows more processors to be involved in the computation.
However, practical multi-core systems are often equipped
with a limited number of processor cores (2 or 4 typically,
and 6 on some recent high-end systems), and cannot support
a sufficient number of threads to fully exploit the potential
of the algorithm.

GPU has recently become an essential high performance
computing device. It has attracted intensive research interests
since it is equipped with a large number of processor cores
(though each core is not as powerful as a CPU core).
For applications with many independent computation tasks
and thus suitable for this architecture, GPU computing has
demonstrated substantial performance improvements [5]. In
this paper, we develop a novel push-relabel algorithm that
exploits the large number of available processor cores of the
GPU, and adaptively switches between the CPU and GPU
during the course of the execution for optimal parallelization
efficiency. To the best of our knowledge, we are not aware
of any previous works that utilize the GPU for the generic
maximum flow problem.

Our algorithm is built with the lock-free push-relabel
technique that we previously developed in [4]. For notational
convenience, we use “CUDA” and “GPU” interchangeably
in the rest of the paper. Our CUDA-based algorithm is able
to utilize the large number of processor cores available on
a GPU and hence has the potential to outperform existing
algorithms. However, due to the two limitations listed above,
we observed that the speedup achieved by our CUDA-

1

based algorithm does not increase linearly with the number
of available processor cores on a GPU. To analyze such
performance discrepancy, we develop a model to describe
the execution characteristics of both GPU- and CPU-based
versions of the algorithm. The analysis shows that the perfor-
mance degradation is due to the lack of available concurrent
tasks on sparse graphs (hence many threads are wasting
time idling), and also due to the noticeable overheads of
exchanging data between the CPU main memory and the
GPU global memory.

As the number of available concurrent tasks push-relabel
algorithm varies during run time and may not be large
enough to keep the GPU cores busy, we improve our
algorithm to a CPU-GPU-Hybrid scheme which is able to
take advantage of both serial and parallel executions. The
new algorithm is based on the efficiency model that can
dynamically estimate the efficiency for the current workload.
An arbitrator periodically compares the efficiency of CPU
and GPU and chooses the one with higher efficiency to
perform the computation. Extensive experimental results
show that our new algorithm is robust and efficient. Our
algorithm outperforms the sequential push-relabel algorithm
for all types (both dense and sparse) of input graphs that
were tested. Up to 2 times improvement in execution time
has been observed.

The major contributions of our paper are summarized as
follows:

1) We first develop a generic parallel push-relabel algo-
rithm for CUDA-based GPUs.

2) We then model the parallelization efficiency of our
push-relabel algorithm.

3) We then develop a dynamically tuned push-relabel al-
gorithm that can adaptively select CPU or GPU for the
computation and maximize the execution efficiency.

4) We conduct extensive experiments and demonstrate
the effectiveness of the proposed dynamically tuned
algorithm.

The rest of the paper is organized as follows: Section II
summarizes the background and related work. Section III
presents our CUDA-based generic parallel push-relabel al-
gorithm. In Section IV, we develop an efficiency model for
our algorithm. The model is used in Section V to develop our
dynamically tuned push-relabel algorithm. Section VI and
Section VII discuss the implementation details and present
the experimental results. Section VIII concludes the paper
with the discussion on future research directions.

II. BACKGROUND AND RELATED WORK

The max-flow problem is defined as follows: A flow
network is a graph G(V,E) where edge (u, v) ∈ E has
capacity cuv . G has source s ∈ V and sink t ∈ V . A flow
in G is a real valued function f defined over V × V that
satisfies the following constraints:

1. f(u, v) ≤ cuv for u, v ∈ V
2. f(v, u) = −f(u, v) for u, v ∈ V
3.

∑
v∈V f(v, u) = 0 for u ∈ V − {s, t}

The value of a flow f is defined as |f | =
∑

u∈V f(s, u),
which is the net amount of flow sent from s to t. The max-
imum flow problem searches for a flow with the maximum
value.

Early solutions to the maximum flow problem are based
on the augmenting path method due to Ford and Fulker-
son [6], which by itself is pseudo-polynomial and was later
improved by carefully choosing the order in which aug-
menting paths are selected (e.g. the O(|V ||E|2) algorithm
by Edmonds and Karp [7] and the O(|V |2|E|) algorithm
by Dinitz [8]). The concept of preflow was introduced by
Karzanov in [9], which leads to an O(|V |3) algorithm,
the execution time was further improved in [10], [11].
Goldberg et al. designed the push-relabel algorithm [12] with
O(|V |2|E|) operations and further improved the complexity
bound by using various techniques [3].

Practical implementations of parallel algorithms have also
been investigated intensively for symmetric multi-processing
(SMP) and multi-core platforms. Anderson et al. [1] aug-
mented the push-relabel algorithm with a global relabeling
operation. Bader et al. [2] designed a parallel implemen-
tation using gap relabeling heuristic with considerations in
the cache performance of the push-relabel algorithm. Both
implementations have demonstrated good execution speed.
These parallel implementations, however, share the common
feature of using locks to protect every push and relabel
operation in its entirety, which essentially sequentializes any
two push/relabel operations whenever a common vertex is
involved. Without lock protection, these implementations
will fail to find the maximum flow. Locks are also known
to have expensive overheads [13]. Parallelism in these al-
gorithms is therefore limited by the intensive lock usages,
which can lead to performance degradation especially when
the number of processors scales up.

These parallel algorithms rely on locks to guarantee their
correctness and hence cannot work on platforms that do
not support locking primitives. CUDA-based GPUs are one
such platform (although we can build locks in software
using the atomic compare-and-swap function supported by
CUDA, such locks are very inefficient). Therefore special
techniques have been developed by researchers to design
max-flow algorithms for CUDA-based GPUs. Hussein et
al. [14] presented an implementation containing only push
and global relabeling operations. Vineet et al. [15] reported
another version which included parallel push and relabel
operations, but without the global relabeling heuristic. In
these methods, each push operation is divided into two
phases, push and pull, to avoid lock usages. This lock-
free method requires very strong synchronization and the
extra pull operations cause substantial overheads. In addi-

2

tion, these existing CUDA-based max-flow algorithms are
developed for computer vision applications and can only
handle graphs with a grid topology that are constructed from
the target images.

Our algorithm improves over the existing algorithms. By
extending our previous results in [4], we utilize the atomic
fetch-and-add function supported by CUDA-based GPU and
integrate both push and relabel operations into the CUDA
kernel. Compared with the existing parallel algorithms, our
algorithm features significantly improved parallelization ef-
ficiency and the capability of handling arbitrary input graph
topologies.

III. GENERIC PARALLEL PUSH-RELABEL ALGORITHM
ON CUDA-BASED GPU

Before presenting our algorithm, we first briefly re-state
some notations for network flow problems. Given a direct
graph G(V,E), function f is called a flow if it satisfies
the three constraints above. Given G(V,E) and flow f , the
residual capacity cf (u, v) is given by cuv−f(u, v), and the
residual network of G induced by f is Gf (V,Ef), where
Ef = {(u, v)|u ∈ V, v ∈ V, cf (u, v) > 0}. Thus (u, v) ∈
Ef ⇔ cf (u, v) > 0.

For each vertex u ∈ V , e(u) is defined as e(u) =∑
w∈V f(w, u), which is the net flow into vertex u. Con-

straint 3 in the problem statement requires e(u) = 0 for
u ∈ V − {s, t}. But the intermediate result before an
algorithm terminates may have non-zero e(u)’s. We say
vertex u ∈ V −{s, t} is overflowing if e(u) > 0. An integer
valued height function h(u) is also defined for every vertex
u ∈ V . We say u is higher than v if h(u) > h(v). We follow
the definition in [12] and say h is a valid height function
if (u, v) ∈ Ef implies h(u) ≤ h(v) + 1. If an overflowing
vertex u whose height h(u) < |V |, we call this vertex an
active vertex.

Maximum flow algorithms based on the push/relabel
technique typically consist of two stages [12]. The first stage
searches for a minimum cut and the value of a maximum
flow. The second stage constructs a valid maximum flow by
returning possible excessive flows back to the source (the
vertices may have excessive flow upon completion of the
first stage). The complexity of the first stage is O(|V |3)
or O(|V |2|E|) depending on the vertex processing order.
The second stage costs O(|E|log|V |) operations, which
takes much less time than the first stage. For applications
searching for the minimum cut such as some computer
vision applications [14], [15], the second stage is not needed
at all. Because the first stage dominates the execution time
of the entire algorithm, our algorithm will focus on the first
stage.

Our CUDA-based parallel push-relabel algorithm is pre-
sented in Algorithm 1, where the initialize stage, the
push relabel kernel and global relabel cpu functions are
defined in Programs 2-4. In the main loop of Algorithm 1,

we first transfer all the necessary data into the GPU, and then
launch the CUDA kernel to concurrently execute the push
and relabel operations. After the kernel executes a certain
number of cycles, we transfer cf , h and e back to the CPU
main memory. The CPU will perform the global relabeling
by calling global relabel cpu. To detect the termination of
the algorithm, a global variable ExcessTotal is used to
track the total amount of excessive flow in the residual graph.
The algorithm terminates when e(s) + e(t) becomes equal
to ExcessTotal, which is equivalent to the condition that
no active vertices exist in the graph (except for the source
and sink). If the termination condition is not satisfied, h will
be transferred into CUDA again and CPU and CUDA will
repeat the above procedure until e(s) + e(t) becomes equal
to ExcessTotal. When the algorithm terminates, e(t) stores
the value of the maximum flow.

Algorithm 1 Parallel Push-Relabel Algorithm using CUDA
1: Initialize e, h, cf and ExcessTotal
2: copy e and cf from the CPU main memory to the CUDA

global memory
3: while e(s) + e(t) < ExcessTotal do
4: copy h from the CPU main memory to the CUDA

global memory
5: call push relabel kernel()
6: copy cf , h and e from CUDA global memory to CPU

main memory
7: call global relabel cpu()
8: end while

Our recent work [4] proposed an asynchronous lock-free
push-relabel algorithm. In [4], we augmented the original
push-relabel algorithm [3] by pushing excess flow to the
lowest neighbor of all active vertices, which allows the push
and relabel operations to be arbitrarily interleaved as long
as the excessive flow and residual capacity of the edges
are updated atomically. Hence we only require atomic read-
modify-write operations from the target computing platform,
which makes this algorithm an ideal solution for CUDA
because CUDA has been supporting such atomic operations
since compute capability 1.1.

In Algorithm 1, the push and relabel operations are per-
formed by CUDA through the push relabel kernel func-
tion, which is designed using the technique we developed
in [4]. In the push relabel kernel function, the algorithm
launches one thread for every vertex (except for the source
and the sink) and concurrently executes the push and relabel
operations. Every thread will continuously perform push
or relabel operations until the vertex u becomes inactive
(e(u) = 0 or h(u) > |V |). The atomic additions and
subtractions are supported by the CUDA build-in atomic
operations over the global memory.

Previous studies suggested two heuristics, global relabel-
ing and gap relabeling, to improve the practical performance

3

of push-relabel algorithm. The height h of a vertex helps
the algorithm to identify the direction to push the flow
towards the sink. Global relabeling heuristic updates the
heights of the vertices with their shortest distance to the
sink. This can be performed by a backward breadth-first
search (BFS) from the sink in the residual graph [3]. Gap
relabeling heuristic due to Cherkassky also improves the
practical performance of the push-relabel method, though
not as much as global relabeling does [3]. It discovers the
overflowing vertices from which the sink is not reachable
and then relabel these vertices to |V | to avoid unnecessary
further operations. Goldberg also pointed out adopting either
one of global or gap relabeling can improve the practical
performance of push-relabel algorithm [3].

In sequential push-relabel algorithms, global relabeling
and gap relabeling are executed by the same single thread
that executes the push and relabel operations. Race con-
ditions therefore do not exist. For parallel push-relabel
algorithms, the global relabeling and gap relabeling have
been proposed by Anderson [1] and Bader [2] respectively.
Both heuristics locks the vertices to avoid race conditions:
the global or gap relabeling, push, and relabel operations are
therefore pair-wise mutually exclusive. The lack of locking
primitives makes such technology infeasible for our CUDA
based algorithm. Hussein [14] proposed a lockstep BFS to
perform parallel global relabeling, but it was shown in [14]
that this design was very slow.

In our algorithm, we propose to perform global relabeling
on the CPU side (instead of using CUDA) at the cost of
transferring data between the global memory of CUDA to
the main memory of CPU (line 6 in Algorithm 1). Although
we can avoid such data transfer overheads by keep the global
relabeling operation inside CUDA, this design choice loses
in overall performance because global relabeling is based
on BFS, which has an intrinsically sequential processing
order and also relies intensively on branch instructions, for
both of which CUDA is known to be very inefficient. For
example, we observed that performing a global relabeling on
CPU only costs 0.4 seconds on a graph of 7998000 edges
(data transfer overheads included), while CUDA needs at
least 2 seconds to perform the same operation on the same
graph. Our algorithm therefore chooses to offload the global
relabeling operation to the CPU.

Our global relabeling operation actually consists of three
steps. The first step is violation-cancellation. In our lock-free
algorithm [4], at a given time, the residual graph might con-
tain some violating edge (u, v) for which h(u) > h(v)+1.
We proved in [4] that this violation edge will be canceled im-
plicitly by a push operation from the vertex u to v. However,
in Algorithm 1, these canceling push operations may not
have been performed when the push relabel kernel stops.
We thus need to explicitly identify and cancel such violations
in the h function before performing the global relabeling
operation.

The second step is the actual global relabeling operation.
After finishing the global relabeling operation, we need
to perform the third step, processing the excesses of the
inactive vertices. Because we still need the excesses to stay
at the inactive vertices for the following second stage of the
algorithm, we subtract the value of those inactive excesses
from the ExcessTotal.

In Algorithm 1, global relabel cpu is performed by the
CPU periodically. The frequency of global relabel cpu can
be adjusted by changing the value of KERNEL CYCLES.
After every thread finishes KERNEL CYCLES push or
relabel operations, cf will be transferred from the CUDA
global memory to the main memory of CPU along with
h and e. If the termination condition is not satisfied, the
global relabel cpu function will assign a new height for
each vertex based on this topology of the residual graph
(derived from cf).

For Algorithm 1, we have the following theorem:

Theorem 1. Given graph G(V,E) with source s and sink t,
Algorithm 1 finds the maximum flow with O(|V |2|E|) push
and relabel operations.

Proof Sketch: due to the CUDA support of atomic instruc-
tions in its global memory, we can show that even though the
CUDA threads may execute their push and relabel operations
in an arbitrarily interleaved manner, the outcome of the
execution reduces to only a few simplified scenarios. By
analyzing these scenarios, we can show that function f is
maintained as a valid height function. A valid h guarantees
that there does not exist any paths from s to t throughout
the execution of the algorithm, and hence guarantees the
optimality of the final solution if the algorithm terminates.
The termination of the algorithm is also guaranteed by the
validatity of h, as it bounds the number of push and relabel
operations to O(|V |2|E|).

Detailed proof can be referred to our results in [4]. It
is not difficult to show that the CUDA specific designs of
Algorithm 1 conforms to the algorithm requirements of [4].
The proof is omitted here due to the page limit.

IV. EFFICIENCY MODEL FOR CUDA AND CPU

Algorithm 1 is designed to exploit the massive parallel
processing capability of CUDA-devices. It utilizes the GPU
to perform the push and relabel operations that dominate
the execution time, and the CPU is responsible for the
intrinsically sequential global relabeling operation that the
GPU is not good at. However, the improved GPU parallelism
is affected by two factors: (1) the number of available push
and relabel operations, and (2) the overheads of data transfer
between the CPU and the GPU. In this section, we analyze
the efficiency of the CUDA-based Algorithm 1 and compare
it against the CPU-only implementation. The purpose of
the analysis is to establish the theoretical foundation for

4

Program 2 Initialize e, h, cf and ExcessTotal on CPU
1: h(s)← |V |
2: e(s)← 0
3: for all u ∈ V − {s} do
4: h(u)← 0
5: e(u)← 0
6: end for
7: for all (u, v) ∈ E do
8: cf (u, v)← cuv

9: cf (v, u)← cvu

10: end for
11: for all (s, u) ∈ E do
12: cf (s, u)← cf (s, u)− csu

13: cf (u, s)← cf (u, s) + csu

14: e(u)← csu

15: ExcessTotal← ExcessTotal + csu

16: end for

Program 3 Implementation of push relabel kernel func-
tion for vertex u on CUDA

1: cycle = KERNEL CYCLES
2: while cycle > 0 do
3: if e(u) > 0 and h(u) < |V | then
4: e′ ← e(u)
5: h′ ←∞
6: for all (u, v) ∈ Ef do
7: h′′ ← h(v)
8: if h′′ < h′ then
9: v′ ← v

10: h′ ← h′′

11: end if
12: end for
13: if h(u) > h′ then
14: d← min(e′, cf (u, v′))
15: AtomicAdd(cf (v′, u), d)
16: AtomicSub(cf (u, v′), d)
17: AtomicAdd(e(v′), d)
18: AtomicSub(e(u), d)
19: else
20: h(u)← h′ + 1
21: end if
22: end if
23: cycle← cycle− 1
24: end while

Section V that dynamically tunes the computation between
the GPU and the CPU.

Let Wi denote the workload available to a computing unit
(either the GPU or the CPU) at the ith iteration in terms of
the number of push/relabel operations. Because each active
node allows exactly one push or relabel operation that needs
to be performed, we approximate Wi with Ni, the number

Program 4 Implementation of global relabel cpu function
on CPU

1: for all (u, v) ∈ E do
2: if h(u) > h(v) + 1 then
3: e(u)← e(u)− cf (u, v)
4: e(v)← e(v) + cf (u, v)
5: cf (v, u)← cf (v, u) + cf (u, v)
6: cf (u, v)← 0
7: end if
8: end for
9: do a backwards BFS from the sink and assign the height

function with each vertex’s BFS tree level.
10: if not all the vertices are relabeled then
11: for all u ∈ V do
12: if u is not relabeled and marked then
13: mark u
14: ExcessTotal← ExcessTotal − e(u)
15: end if
16: end for
17: end if

of active vertices at the beginning of the ith iteration. Let
Ecuda denote the efficiency of CUDA-based implementation
of Algorithm 1, we have

Ecuda =
Ni

Toverhead +
Ni

Ccuda

(1)

where Toverhead is the time cost for overheads includ-
ing CUDA kernel initialization, data transfer between the
memories of CUDA and CPU, and Ccuda is the computing
capability of the CUDA devices in terms of the number of
push/relabel operations per unit of time.

On the other hand, the CPU can substitute the GPU and
execute the push and relabel operations without incurring
the data transfer overhead. A model similar to Equation 1
is also suitable for CPU efficiency. Because Toverhead is
negligible for the CPU, the efficiency of CPU Ecpu is
therefore straightforward:

Ecpu = Ccpu (2)

where Ccpu is the computing capability of the CPU,
independent of Ni.

Comparing Ecuda and Ecpu, we can see that even though
Ccuda is much greater than Ccpu (due to the large number
of CUDA processor cores), the CUDA efficiency may still
be lower than that of the CPU when Toverhead is large or
when Ni is small.

In fact, Ni is often small for sparse graphs. This is
demonstrated in the following example. We sample the
number of active vertices each time when global relabeling is
performed. The sampling results of a Genrmf graph (details

5

 0

 200

 400

 600

 800

 1000

 1200

 1400

1 3 5 7 9 11 13 15 17 19 21 23 25

N
u

m
b

er
 o

f
A

ct
iv

e
V

er
ti

ce
s

The ith Global Relabeling

Figure 1. The number of active vertices along with the algorithm execution

of Genrmf graphs can be found in Section VII) with 262144
vertices and 1276928 edges is shown in Figure 1. We can see
that though 262144 threads can be launched simultaneously,
there are at most 1400 threads that have work to do. Most of
the time, especially when the algorithm initially starts, only
hundreds of vertices are active, which leads to a very small
value of Ni.

Toverhead is affected by a list of factors, but the most sig-
nificant one is the data transfer cost. In our implementation
of Algorithm 1, for each launch of the kernel, we need to
transfer h, cf and e between memories of CUDA and CPU.
The launch overhead for each transfer is small (measured
to be about 10µs), so Toverhead is approximately equal to
(3|V | + |E|)/B, where B is the data transfer bandwidth
between CUDA and CPU. Toverhead for CUDA can be
calculated in advance when an input graph is given.

The above analysis shows that CPU and CUDA are
suitable for different workloads. In order to take advantage
of both units, it is necessary to evaluate their efficien-
cies dynamically according to available workload. As the
computation progresses, the workload should be assigned
to different computing units (CUDA or CPU) to achieve
optimal efficiency. By comparing Equations 1 and 2, we
derive the following threshold on Ni for Ecuda to be higher
than Ecpu:

Ni >
ToverheadCcudaCcpu

Ccuda − Ccpu
(3)

Equation 3 shows that the threshold increases with the
growth of Toverhead. When the transfer overhead is large,
it is more desirable to keep all the computations on the
CPU, instead of sending them to CUDA. On the other hand,
when Ccuda is high, the computing capability of CUDA may
justify the transfer overhead.

Because the actual value of Ccpu and Ccuda depends
on the raw processing power of the CPU/GPU as well as
the input graph (which affects vertex degree and hence the
complexity of each individual push/relabel operation, as well
as the data locality), there does not exist a fixed threshold
value that works for all the input graphs. Actually, we

Algorithm 5 Dynamically Tuned Push-Relabel Algorithm
using CUDA

1: Initialize e, h, cf , ExcessTotal, aSize and Threshold
2: LastDevice← CPU
3: while e(s) + e(t) < ExcessTotal do
4: if aSize > Threshold then
5: if LastDevice = CPU then
6: copy e and cf from CPU main memory to CUDA

global memory
7: LastDevice← GPU
8: end if
9: copy h from CPU main memory to CUDA global

memory
10: call push relabel kernel()
11: copy cf , h and e from CUDA global memory to

CPU main memory
12: call global relabel cpu()
13: else
14: if LastDevice = GPU then
15: LastDevice← CPU
16: end if
17: Goldberg’s serial version including global and gap

relabeling operation (hi pr)
18: end if
19: Threshold← ToverheadCcudaCcpu

Ccuda−Ccpu

20: end while

observed orders of magnitudes difference in Ccpu and Ccuda

when different input graphs were used. To utilize Equation 3,
we propose to start the algorithm with a small threshold
value and adjust it based on the dynamically measured Ccuda

and Ccpu. We will elaborate the implementation details in
the Section V.

V. DYNAMICALLY TUNED PUSH-RELABEL ALGORITHM

In this section, we present our dynamically tuned push-
relabel algorithm. The algorithm is shown in Algorithm 5. It
contains not only our parallel implementation of push-relabel
algorithm on CUDA (Algorithm 1), but also a CPU-based
serial implementation due to Goldberg [3]. We add an arbi-
trator to dynamically choose, as the computation advances,
the best implementation according to the comparison of their
efficiencies by the model we developed in Section IV.

In Algorithm 5, the main loop of Algorithm 1 has been
augmented. Before assigning the workload, we evaluate the
efficiency of both CPU and CUDA in line 4 by examining
the relation between two variables aSize and Threshold
according to Equation 3. The global variable aSize denotes
the number of active vertices currently available. aSize
will be updated every time when the global relabel cpu
function counts the active vertices for CUDA. We also have
modified the code of Goldberg’s version to track the value of
aSize. Based on system parameters such as the data transfer

6

bandwidth B, the computing capability of CUDA Ccuda

and CPU Ccpu, we choose an optimal threshold for aSize.
When aSize exceeds the threshold, the current workload
will be assigned to CUDA; if not, the current workload will
be carried on by CPU serially.

The Threshold variable initially is a small value. When
the algorithm starts, CPU will do all the push/relabel oper-
ations until aSize reaches Threshold, then CUDA will be
invoked to perform the push/relabel operations. We dynam-
ically evaluate Ccuda and Ccpu by observing the number
of operations that the CPU and GPU can finish in one
unit of time. Next, according to Equation 3 (line 19), we
derive a new value of Threshold. For the next iteration, the
algorithm will choose either CUDA or CPU based on this
new Threshold. Threshold will be updated continuously
to keep the algorithm dynamically tuned.

Compared with the CUDA-only Algorithm 1 and Gold-
berg’s serial Algorithm [3], Algorithm 5 exhibits improved
performance for all types of input graphs that were tested.
The experimental results are presented in Section VII.

VI. IMPLEMENTATION TECHNIQUES

To evaluate the performance of our algorithms, both
Algorithms 1 and 5 were implemented, and denoted as
cuda mf and hybrid mf, respectively.

In the implementations, we allocate the edges continu-
ously in an array which is similar to Goldberg’s hi pr [3].
In Goldberg’s implementation, every vertex and edge has a
structured entry. A vertex entry contains the excessive flow,
height and an address pointer pointing to its first outgoing
edge. All the outgoing edges of each vertex are allocated
together, and a pointer to its mate edge (between the same
vertices but in the reverse direction) is stored in its edge
entry for fast reference. Besides, each edge entry stores
its residual capacity and the address of its end vertex. We
improve this layout for fast data exchange between CUDA
and CPU by separating the pointers from the actual data
items (excess, height and residual capacity). All the vertex
and edge entries are divided into two parts, one stores the
pointers and the other one stores the actual data. The pointers
are transferred into CUDA in the initialization stage. Thus,
during the execution, when we need to exchange ef or h,
we only need to transfer the actual data items. Experiments
demonstrated as much as 50% reduction in the data transfer
time by using this new data layout.

We further optimize the implementations by considering
the specific features of CUDA. The e, h and cf arrays are
allocated in the page-locked memory by cudaMallocHost()
that increases the speed of cudaMemCpy by as much as two
times.

We also evaluate whether the shared memory insides
CUDA should be used or not. Although CUDA hardware
does not maintain coherency between the shared memory
and the global memory, it supports software-based cache

emulation which is efficient for regular data access patterns.
However, the input graphs for our algorithm have various
topologies and the memory access pattern is extremely
irregular. We observe that utilizing the shared memory (via
cache emulation) actually slows down our algorithms, i.e. the
computational costs of keeping the data coherent between
the shared memory and the global memory is higher than
the potential benefit of the faster shared memory.

Another advantage of restricting shared memory usages
is that each thread will be more independent so that we
can separate the threads into as many blocks as possible.
Previous implementations chose larger block sizes to allow
more threads to share the same data. However, for the same
number of threads, a larger block size leads to a smaller grid
size. In CUDA, the threads in the same block will only be
scheduled to the same multiprocessor. When the grid size
is not big enough, not all the multiprocessors inside CUDA
will be utilized. Using more blocks in CUDA programming
therefore often leads to better performance.

Consequently, we implemented our algorithms without
using the shared memory, which allows block sizes as
small as 32. This enables the utilization of all the 30
multiprocessors of our experimental CUDA devices, even
for graphs as small as 1000 vertices.

VII. EXPERIMENTAL RESULTS

In this section, we present the experimental results to
demonstrate the efficiency of our algorithms. We compare
the performance of cuda mf and hybrid mf against Gol-
gberg’s serial implementation hi pr, which is a sequential
push-relabel algorithm with both global relabeling and gap
relabeling. In hi pr, vertices are processed in the descending
order of their heights, which leads to the complexity of
O(|V |2

√
|E|) [16]. This is currently the fastest sequential

implementation of push-relabel algorithm that we are aware
of. It is also faster than the two existing parallel push-relabel
algorithms [1], [2] that are designed for SMP and multi-core
platforms.

The experimental platform consists of a 3.0GHz AMD
quad-core Phenom II 940 processor and an Nvidia GTX
285 graphic card with 1G on-board memory. GTX 285 has
a total number of 30 multiprocessors, each of which has 8
cores. The nvcc release 2.3 and Linux kernel version 2.6.27
were used for the experiments.

We tested five types of input graphs used in the 1st

DIMACS Implementation Challenge [17]:
1) Acyclic-Dense graphs: These are complete directed

acyclic dense graphs: each vertex is connected to every
other vertex. We tested graphs of 2000, 4000 and 6000
vertices.

2) Genrmf graphs: These graphs are comprised of l1
square grids of vertices (frames) each having l2 × l2
vertices. The source vertex is at a corner of the first
frame, and the sink vertex is at the opposite corner

7

of the last frame. Each vertex is connected to its grid
neighbors within the frame and to one vertex randomly
chosen from the next frame. We tested the graphs
of l1 = 192, l2 = 24 (110592 vertices and 533952
edges), l1 = 224, l2 = 328 (175616 vertices and
852208 edges) and l1 = 256, l2 = 32 (262144 vertices
and 1276928 edges).

3) Genrmf-wide graphs: The topology is the same as
genrmf-long graphs except for the values of l1 and
l2. Frames are bigger in Genrmp-wide graphs than in
Genrmp-long graphs. We tested the graphs of l1 =
36, l2 = 36 (46656 vertices and 226800 edges), l1 =
48, l2 = 48 (110592 vertices and 541440 edges). l1 =
64, l2 = 64 (262144 vertices and 1290240 edges).

4) Washington-RLG-long graphs: These graphs are
rectangular grids of vertices with w rows and l
columns. Every vertex in a row has three edges
connecting to random vertices in the next row. The
source and the sink are external to the grid, the source
has edges to all vertices in the top row, and all vertices
in the bottom row have edges to the sink. We tested
the graphs of w = 512, l = 1024 (524290 vertices
and 1572352 edges), w = 768, l = 1280 (983042
vertices and 2948352 edges) and w = 1024, l = 1536
(1572866 vertices and 4717568 edges).

5) Washington-RLG-wide graphs: Same as
Washington-RLG-long graphs except for the values
of w and l. Each row in the Washington-RLG-
wide graphs are wider. We tested the graphs of
w = 512, l = 512 (262146 vertices and 785920
edges), w = 768, l = 768 (589826 vertices and
1768704 edges) and w = 1024, l = 1024 (1048578
vertices and 3144704 edges)

For each type of graphs, 50 instances were generated
using different seeds for the pseudo-random generator. Every
instance was tested 3 times for each algorithm.

During the experiments, we observed that a fixed value
of KERNEL CYCLES achieves the best performance. We
set the KERNEL CYCLES to 32 for Acyclic-Dense graphs
and 4096 for Genrmf graphs and Washington-RLG graphs.
The execution results reported for each program were the
averages over the 150 runs.

We first tested the impact of the data transfer band-
width between CUDA and CPU. Equation 1 shows that
the bandwidth influences Toverhead and subsequently the
overall CUDA performance. By adjusting the PCI-E set-
tings, we configured bandwidth from 2.4 GBytes/sec to
0.6 GBytes/sec. 50 Washtington-RLG-long graphs (983042
vertices and 2948352 edges) were used for this set of exper-
iments. The results are shown in Figure 2. Because hi pr
does not transfer data through the PCI bus, it is not affected
by changes in the bandwidth. But cuda mf and hybrid mf
both suffered from the decrease of the bandwidth. When the

 0

 1

 2

 3

 4

 5

 6

 7

2.4 1.2 0.6

R
u

n
n

in
g

 T
im

e
(s

)

PCI-E-Bus Bandwidth (GBytes/s)

hybrid_mf

cuda_mf

hi_pr

Figure 2. The bandwidth impacts on cuda mf, hybrid mf and hi pr

 0

 1

 2

 3

 4

 5

 6

 7

 8

2000 4000 6000

R
u

n
n
in

g
 T

im
e

(s
)

Graph Size (Number of Vertices)

hybrid_mf

cuda_mf

hi_pr

Figure 3. The performance comparison among cuda mf, hybrid mf and
hi pr on Acyclic-Dense graphs

bandwidth reduced from 2.4 GBytes/sec to 0.6 GBytes/sec,
cuda mf lost 30% in its performance. Our hybrid mf was
able to dynamically adjust the workload assignment so that
it suffered much less than cuda mf with almost negligible
degradation in performance. In the following experiments,
we set the PCI-E bandwidth to 2.4 GBytes/sec.

Figure 3 shows the results on Acyclic-Dense graphs. We
can observe that hi pr slightly outperforms cuda mf for
graphs of size 2000, but when the graph size increases, the
performance of cuda mf exceeds that of hi pr, because the
number of working threads on CUDA increases when the
graph size increases. Nevertheless, hybrid mf is faster than
both cuda mf and hi pr for all graph sizes from 2000 to
6000. When the graph size is 6000, hybrid mf is faster
than hi pr by 2 times. We observed that hybrid mf usually
launched the push relabel kernel only twice (compared
with cuda mf’s over ten times), and the rest of work is
completed by the CPU. The experiments demonstrated that
hybrid mf can take advantages of both the CPU and CUDA
so that it outperforms both.

We also observed similar results on Washington-RLG

8

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

524290 983042 1572866

R
u

n
n

in
g

 T
im

e
(s

)

Graph Size (Number of Vertices)

hybrid_mf

cuda_mf

hi_pr

Figure 4. The performance comparison among cuda mf, hybrid mf and
hi pr on Washington-RLG-long graphs

 0

 1

 2

 3

 4

 5

 6

 7

262146 589826 1048578

R
u

n
n
in

g
 T

im
e

(s
)

Graph Size (Number of Vertices)

hybrid_mf

cuda_mf

hi_pr

Figure 5. The performance comparison among cuda mf, hybrid mf and
hi pr on Washington-RLG-wide graphs

graphs as shown in Figures 4 and 5.
On Genrmf graphs shown in Figure 6 and 7, cuda mf is

much slower than hi pr, but hybrid mf is still faster than
hi pr. Genrmf graphs are typical sparse graphs, which has
∼110,000 vertices with an average vertex degree of 5. We
observed in the experiments that less than 1% of the vertices
are typically active during the course of the computation.
For this type of graphs, CUDA is not as efficient as CPU.
hybrid mf adaptively chooses CPU to perform most of the
operations and thus exhibits very close performance to hi pr

In summary, the experiments show that cuda mf and
hi pr are suitable for different scenarios. Our dynamically
tuned algorithm hybrid mf is able to take advantage of
both cuda mf and hi pr. By utilizing the efficiency model,
hybrid mf has achieved the highest efficiency among all
these three implementations.

VIII. CONCLUSION AND DISCUSSIONS

In this paper, we presented two push-relabel algorithms
using CUDA. The first algorithm uses CUDA to conduct

 0

 0.5

 1

 1.5

 2

 2.5

110592 175616 262144

R
u

n
n

in
g

 T
im

e
(s

)

Graph Size (Number of Vertices)

hybrid_mf

cuda_mf

hi_pr

Figure 6. The performance comparison among cuda mf, hybrid mf and
hi pr on Genrmf-long graphs

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

46656 110592 262144

R
u

n
n

in
g
 T

im
e

(s
)

Graph Size (Number of Vertices)

hybrid_mf

cuda_mf

hi_pr

Figure 7. The performance comparison among cuda mf, hybrid mf and
hi pr on Genrmf-wide graphs

all the push/relabel operations and uses the CPU to perform
global relabeling operation. The complexity of the algorithm
is O(|V |2|E|). We further improve the performance of
this CUDA-only algorithm with a hybrid algorithm that
adaptively chooses CUDA and CPU to conduct the push
and relabel operations. Guided by our efficiency model, this
algorithm is able to dynamically assign the workload to the
computing unit with higher computing efficiency. Intensive
experiments show that the adaptive algorithm outperforms
both the CUDA-only version and Goldberg’s sequential
algorithm by as much as 2 times.

The algorithm can be improved in the following aspects
and we plan to extend our research along these directions.
First, Toverhead, the overhead of data transfer can be reduced
by managing the volume of the data exchanging. Secondly,
we plan to investigate the enforcement of an approximate
highest-label-first ordering on the push and relabel opera-
tions conducted by CUDA. The order is expected to reduce
the total number of operations and improve the overall
execution speed of the algorithm.

9

ACKNOWLEDGMENT

This work is supported by the US National Science
Foundation under award number CNS-0845583.

REFERENCES

[1] R. J. Anderson and a. C. S. Jo “On the parallel implemen-
tation of goldberg’s maximum flow algorithm,” in SPAA ’92:
Proceedings of the fourth annual ACM symposium on Parallel
algorithms and architectures. New York, NY, USA: ACM,
1992, pp. 168–177.

[2] D. Bader and V. Sachdeva, “A cache-aware parallel imple-
mentation of the push-relabel network flow algorithm and
experimental evaluation of the gap relabeling heuristic,” in
PDCS ’05: Proceedings of the 18th ISCA International Con-
ference on Parallel and Distributed Computing Systems, 2005.

[3] A. V. Goldberg, “Recent developments in maximum flow
algorithms (invited lecture),” in SWAT ’98: Proceedings of the
6th Scandinavian Workshop on Algorithm Theory. London,
UK: Springer-Verlag, 1998, pp. 1–10.

[4] B. Hong, “A lock-free multi-threaded algorithm for the max-
imum flow problem,” in IEEE International Parallel and
Distributed Processing Symposium, Aprail 2008.

[5] S. Lahabar and P. J. Narayanan, “Singular value decomposi-
tion on gpu using cuda,” in IPDPS ’09: Proceedings of the
2009 IEEE International Symposium on Parallel&Distributed
Processing. Washington, DC, USA: IEEE Computer Society,
2009, pp. 1–10.

[6] L. R. Ford and D. R. Fulkerson, Flows in Networks. Prince-
ton University Press, 1962.

[7] J. Edmonds and R. M. Karp, “Theoretical improvements in
algorithmic efficiency for network flow problems,” J. ACM,
vol. 19, no. 2, pp. 248–264, 1972.

[8] E. Dinic, “Algorithm for solution of a problem of maximum
flow in networks with power estimation,” Soviet Mathematics
Doklady, vol. 11, pp. 1277–1280, 1970.

[9] A. V. Karzanov, “Determining the maximal flow in a network
by the method of preflows,” Soviet Mathematics Doklady,
vol. 15, pp. 434–437, 1974.

[10] H. N. Gabow, “Scaling algorithms for network problems,” J.
Comput. Syst. Sci., vol. 31, no. 2, pp. 148–168, 1985.

[11] A. V. Goldberg and R. E. Tarjan, “Finding minimum-cost
circulations by successive approximation,” Math. Oper. Res.,
vol. 15, no. 3, pp. 430–466, 1990.

[12] ——, “A new approach to the maximum flow problem,”
in STOC ’86: Proceedings of the eighteenth annual ACM
symposium on Theory of computing. New York, NY, USA:
ACM, 1986, pp. 136–146.

[13] D. Culler, J. P. Singh, and A. Gupta., Parallel Computer
Architecture: A Hardware/Software Approach. Morgan Kauf-
mann Publishers, 1998.

[14] M. Hussein, A. Varshney, and L. Davis, “On implementing
graph cuts on cuda,” in First Workshop on General Purpose
Processing on Graphics Processing Units, Boston, MA, Oc-
tober 2007.

[15] V. Vineet and P. Narayanan, “Cuda cuts: Fast graph cuts on
the gpu,” 2008, pp. 1–8.

[16] J. Cheriyan and K. Mehlhorn, “An analysis of the highest-
level selection rule in the preflow-push max-flow algorithm,”
Information Processing Letters, vol. 69, pp. 69–239, 1998.

[17] D. S. Johnson and C. C. McGeoch, Eds., Network Flows
and Matching: First DIMACS Implementation Challenge.
Boston, MA, USA: American Mathematical Society, 1993.

10

