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• It is widely recommended to optimize for 

higher occupancy

• Indeed, you can use higher occupancy to hide 

Occupancy is overrated

• Indeed, you can use higher occupancy to hide 

arithmetic and memory latencies better

– But don’t have to!

• You can hide latencies keeping occupancy low

– Low occupancy has performance advantages
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• Latency of arithmetic instructions is ≈24 cycles

– Time between collecting operands and when result is 

available

• But throughput is 4 cycles per (SIMD) instruction

– 8 scalar instructions complete each cycle on each SM

Hiding arithmetic pipeline latency

– 8 scalar instructions complete each cycle on each SM

– (here we are talking about “streaming processors” 

only)

• Thus, 24/4 = 6 SIMD instructions must be in the 

flight, per SM

• E.g. they may come from 6 warps (=192 threads)
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• Let’s check our hypotheses with experiments

• 1024 dependent instructions in a loop:

for( int i = 0; i < 1024*1024; i += 1024 )

{

#pragma unroll

Experimental setup
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#pragma unroll

for( int j = 0; j < 1024; j++ )

{

a = a * b + c;

}

}

• How its performance varies under occupancy?



Performance vs. Occupancy
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Experimental validation: 192 threads is enough
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• What if we supply independent instructions 

from same thread?

for( int i = 0; i < 1024*1024; i += 128 )

{

#pragma unroll

for( int j = 0; j < 128; j++ )

Use instruction level parallelism (ILP)
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for( int j = 0; j < 128; j++ )

{

a = a * b + c;

d = d * b + c;

}

}

• Shouldn’t this require fewer threads to fill the 

pipeline?



More ILP needs less warps
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• Can we hide all latency using only 64 threads?

– (Can’t run fewer threads due to other bottlenecks)

for( int i = 0; i < 1024*1024; i += 128 )

{

Pushing it further
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{

#pragma unroll

for( int j = 0; j < 128; j++ )

{

a = a * b + c;

d = d * b + c;

e = e * b + c;

}

}



64 threads is enough
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We hid all latency using only 6% occupancy
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• Yes, e.g. if using register blocking

• Or if you compute multiple outputs per thread

Does ILP happen in practice?
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Can we hide memory latency in a similar 

manner?

– It is hundreds of cycles…
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• Copy one 64-bit word per thread:

__global__ void memcpy( float2 *dst, float2 *src )

{

int iblock = blockIdx.x

+ __mul24( blockIdx.y, gridDim.x );

Memcpy benchmark
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int index = threadIdx.x

+ __mul24( iblock, blockDim.x );

float2 a0 = src[index];

dst[index] = a0;

}

• Allocate shared memory dynamically to 

control occupancy



Memcpy performance
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• Need 320 threads to hide memory latency
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__global__ void memcpy( float2 *dst, float2 *src )

{

int iblock = blockIdx.x

+ __mul24( blockIdx.y, gridDim.x );

int index = threadIdx.x

+ __mul24( iblock, blockDim.x * 2 );

Copy two words per thread
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float2 a0 = src[index];

float2 a1 = src[index+blockDim.x];

dst[index] = a0;

dst[index+blockDim.x] = a1;

}

• Load two words but wait for latency once



2 words per thread: performance
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Get same performance at lower occupancy
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4 words per thread: performance
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8 words per thread: performance
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Get 80% of memory peak at 6% occupancy
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Can hide both memory and arithmetic latency 

using 64 threads

Conclusion so far
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• Low occupancy = many registers per thread

• So, can keep large working set in registers

– To reduce traffic to other memories

– E.g. to access shared memory less

Who cares?

– E.g. to access shared memory less
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Can shared memory be a bottleneck?

G80/GT200 Fermi

flops/cycle, a*b+c,

single precision

16 flops 64 flops

words/cycle,  32-bit, 

shared memory

8 words 16 words
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shared memory

ratio 2 flops/word 4 flops/word

• Naïve matrix multiply has 1 flop/word

– Bound by shared memory bandwidth



Common computational pattern when using 

shared memory:

• Read from global memory

• Store to shared memory

Shared memory

• Store to shared memory

• Synchronize threads

• Compute using shared memory

Is occupancy important in this case?
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• Due to synchronization, whole thread block 

stalls at once

– no matter how many threads in it:

Whole thread block stalls at once
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What you need is not many concurrent threads, 

but many concurrent thread blocks



Smaller blocks hide latency same

In particular, if you do same work:
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(This implies doing more work per thread)

Using fewer threads, you hide latency sam:e



• In fact, smaller thread blocks are better!
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Small thread blocks are better (I)

• Less threads = more registers per thread
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Small thread blocks are better (II)

• There is a limit on total number of threads

• 1024 on GT200

• This is only 2 thread blocks of size 512

– Enough to hide latency?– Enough to hide latency?

• But 8 thread blocks of size 128
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Small thread blocks are better (III)

• 2x more work per thread – less than 2x more 

registers per thread

– So, less registers per thread block

– Thus, can run more thread blocks concurrently– Thus, can run more thread blocks concurrently

• If already enough concurrent thread blocks?

– Use the extra registers to process larger data 

blocks
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A few simple changes to get 1.4x speedup

Demo: matrix multiply from SDK
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The baseline

• Matrix multiply example from SDK 2.3:

• Uses 16x16 matrix blocks

• Computes one output per thread

• 16x16 thread blocks
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• 16x16 thread blocks

• Well optimized otherwise:

– All memory accesses are coalesced

– Data is cached in shared memory



The baseline (CUDA SDK 2.3)

float Csub = 0;

for (int a = aBegin, b = bBegin; a <= aEnd;

a += aStep, b += bStep) {

__shared__ float As[BLOCK_SIZE][BLOCK_SIZE];

__shared__ float Bs[BLOCK_SIZE][BLOCK_SIZE];

AS(ty, tx) = A[a + wA * ty + tx];

BS(ty, tx) = B[b + wB * ty + tx];

__syncthreads();

30

__syncthreads();

for (int k = 0; k < BLOCK_SIZE; ++k)

Csub += AS(ty, k) * BS(k, tx);

__syncthreads();

}

int c = wB * BLOCK_SIZE * by + BLOCK_SIZE * bx;

C[c + wB * ty + tx] = Csub;

The original code (comments not included)



• The baseline runs at 200 Gflop/s

– For 1008x1008 matrices

– Measure only GPU time (no PCIe transfers)

The baseline performance

• Uses only 14 registers per thread

• Sustains 100% occupancy

• What can be better?
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• In the new code I run 16x8 thread blocks

– Grid size is same

• Half of the threads is eliminated

• Each remaining thread does 2x more work

Step I: do 2 outputs per thread

• Each remaining thread does 2x more work

32



Two outputs per thread (I)

float Csub[2] = {0,0};

for (int a = aBegin, b = bBegin; a <= aEnd;

a += aStep, b += bStep) {

__shared__ float As[BLOCK_SIZE][BLOCK_SIZE];

__shared__ float Bs[BLOCK_SIZE][BLOCK_SIZE];

AS(ty, tx) = A[a + wA * ty + tx];

BS(ty, tx) = B[b + wB * ty + tx];

AS(ty+8, tx) = A[a + wA * (ty+8) + tx];
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AS(ty+8, tx) = A[a + wA * (ty+8) + tx];

BS(ty+8, tx) = B[b + wB * (ty+8) + tx];

__syncthreads();

Changes are marked in red

• Now have 2 outputs (Csub)

• Each thread fetches 2 elements of A and B



Two outputs per thread (II)

#pragma unroll

for (int k = 0; k < BLOCK_SIZE; ++k)

{

Csub[0] += AS(ty, k) * BS(k, tx);

Csub[1] += AS(ty+8, k) * BS(k, tx);

}

__syncthreads();

}

int c = wB * BLOCK_SIZE * by + BLOCK_SIZE * bx;
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int c = wB * BLOCK_SIZE * by + BLOCK_SIZE * bx;

C[c + wB * ty + tx] = Csub[0];

C[c + wB * (ty+8) + tx] = Csub[1];

• 2x more flops per thread

• Store 2 outputs in the end

• Now compiler needs a hint to unroll the loop



• New performance: 253 Gflop/s

– 27% speedup!

• Uses only 18 registers per thread

2 outputs/thread: performance

• Uses only 18 registers per thread

– 4 more

• Sustains 75% occupancy

– 25% less
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Data fetched from shared memory is reused:

Why the speedup?

for (int k = 0; k < BLOCK_SIZE; ++k)

{

Csub[0] += AS(ty, k) * BS(k, tx);

Csub[1] += AS(ty+8, k) * BS(k, tx);
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}

Reuse was not possible before

• The data was fetched in different threads

• Can’t access registers of another thread

Result: reduced shared memory traffic



• Why not apply same technique again?

• Now use 16x4 thread blocks

• 4 outputs per thread
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Four outputs per thread (I)

float Csub[4] = {0,0,0,0};

for (int a = aBegin, b = bBegin; a <= aEnd;

a += aStep, b += bStep) {

__shared__ float As[BLOCK_SIZE][BLOCK_SIZE];

__shared__ float Bs[BLOCK_SIZE][BLOCK_SIZE];

AS(ty, tx) = A[a + wA * ty + tx];

BS(ty, tx) = B[b + wB * ty + tx];

AS(ty+4, tx) = A[a + wA * (ty+4) + tx];
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AS(ty+4, tx) = A[a + wA * (ty+4) + tx];

BS(ty+4, tx) = B[b + wB * (ty+4) + tx];

AS(ty+8, tx) = A[a + wA * (ty+8) + tx];

BS(ty+8, tx) = B[b + wB * (ty+8) + tx];

AS(ty+12,tx) = A[a + wA * (ty+12)+ tx];

BS(ty+12,tx) = B[b + wB * (ty+12)+ tx]

__syncthreads();

Same idea…



Four outputs per thread (II)

#pragma unroll

for (int k = 0; k < BLOCK_SIZE; ++k)

{

Csub[0] += AS(ty, k) * BS(k, tx);

Csub[1] += AS(ty+4, k) * BS(k, tx);

Csub[2] += AS(ty+8, k) * BS(k, tx);

Csub[3] += AS(ty+12,k) * BS(k, tx);

}

__syncthreads();

}
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}

int c = wB * BLOCK_SIZE * by + BLOCK_SIZE * bx;

C[c + wB * ty + tx] = Csub[0];

C[c + wB * (ty+4) + tx] = Csub[1];

C[c + wB * (ty+8) + tx] = Csub[2];

C[c + wB * (ty+12)+ tx] = Csub[3];

Get even more reuse now…



Unexpected slowdown

New performance is only 235 Gflop/s

• 8% slowdown

What’s the problem?
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What’s the problem?



Use decuda to figure it out

decuda: disassembler of GPU binaries

• second most useful tool after compiler

• many thanks to Wladimir J. van der Laan for 

41

• many thanks to Wladimir J. van der Laan for 

developing it!



Many operations on pointers to shared memory:

movsh.b32 $ofs4, $r29, 0x00000000

mad.rn.f32 $r17, s[$ofs4+0x000c], $r4, $r17

mad.rn.f32 $r10, s[$ofs2+0x000c], $r4, $r10

mad.rn.f32 $r4, s[$ofs3+0x000c], $r4, $r18

movsh.b32 $ofs4, $r9, 0x00000002

add.b32 $ofs4, $ofs4, 0x000002a4

Use decuda to figure it out
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add.b32 $ofs4, $ofs4, 0x000002a4

mov.b32 $r18, $ofs4

mad.rn.f32 $r16, s[$ofs1+0x0010], $r3, $r16

movsh.b32 $ofs4, $r29, 0x00000000

mad.rn.f32 $r17, s[$ofs4+0x0010], $r3, $r17

mad.rn.f32 $r10, s[$ofs2+0x0010], $r3, $r10

mad.rn.f32 $r30, s[$ofs3+0x0010], $r3, $r4

movsh.b32 $ofs4, $r18, 0x00000000



• The problem is poor  locality in sequential 

access to shared memory

– Need to reload pointers too often

• Solution:

Workaround: transpose blocks

• Solution:

– Use transposed layout in shared memory

• Change all AS(yy,xx) to AS(xx,yy), same with BS 

– Pad the arrays

• Define as As[BLOCK_SIZE][BLOCK_SIZE+1]
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• New performance: 284 Gflop/s

• Uses only 29 registers per thread

– 11 more

New 4 outputs/thread: performance

– 11 more

• Sustains 37.5% occupancy

– 2x lower
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Outputs/thread 1 2 4

Registers/thread 14 18 29

Occupancy 100% 75% 37.5%

Optimization summary
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Occupancy 100% 75% 37.5%

Registers/block 3584 2304 1856

Blocks/SM 4 6 6

Gflop/s 200 253 284



At this rate we’ll get to CUBLAS soon:

250

300

350

400

G
fl

o
p

/s

CUBLAS

Optimize further?

46

0

50

100

150

200

1 2 4 8 16

G
fl

o
p

/s

outputs per thread

SDK example

CUBLAS

SGEMM



1

1.5

2

fl
o

p
s/

w
o

rd
Speedup is due to less shared 

memory traffic

47

0

0.5

1

1 2 4 8 16

fl
o

p
s/

w
o

rd

outputs per thread



40%

60%

80%

100%

o
cc

u
p

a
n

cy
Run faster at lower occupancy

48

0%

20%

40%

1 2 4

o
cc

u
p

a
n

cy

outputs per thread



• If you optimize for perfect occupancy, you may 

lose performance opportunities

• Consider hiding latency by computing multiple 

outputs per thread

Conclusion

outputs per thread

• Use registers instead of shared memory 

whenever possible
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