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ABSTRACT

Dyadic tight frame wavelets have been considered as an
alternative to orthogonal wavelets. They allow symmetry,
smooth scaling - wavelet functions, and closely approxi-
mate shift invariance. In this paper, we consider tight frame
symmetric filterbanks with filters of various lengths. The
filterbanks are designed using Gröbner basis methods. An
applications example is considered for the case of image de-
noising.
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1. INTRODUCTION

As is well known, wavelets based on two channels FIR fil-
terbanks and dilation by 2 cannot be both symmetric and or-
thogonal, except for the trivial case of Haar wavelets. Sym-
metry is desirable for example in the applications of image
processing. By increasing the number of filters in an orthog-
onal filterbank, and thus increasing the available degrees
of freedom, one obtains symmetry. However, the resulting
scaling function and wavelets lack smoothness in general,
an important feature for good filterbanks. This suggests the
use of tight frame filterbanks. Such a setup allows for filters
associated with short as well as smooth scaling - wavelet
functions. In addition, TF filterbanks allow for a dense time-
frequency plane and thus are well suited for the applications
of noise removal. The theory of tight frame is by now well
documented, see for example [4, 8, 9, 15]. Tight frame fil-
terbanks (oversampled filterbanks) have seen use in noise
removal applications, see for example [3, 7, 14, 17].

The paper discusses the design of tight frame symmetric
even lengths filterbanks consisting of four various-lengths
filters {h0, h1, h2, h3} with dilation factor 2. Such filters
have been previously discussed in [20] for the orthogonal
case but not for the tight frame case. Using Gröbner ba-
sis [2, 6], we build various-lengths tight frame symmet-
ric filterbanks. The Gröbner bases are found using Singu-
lar [12]. The paper is to briefly discuss tight frame theory,

followed by two examples, including an example of image
processing noise removal. A comparison with biorthogo-
nal as well as 4-band tight frame symmetric filters is to be
discussed.

2. BACKGROUND THEORY

The theory of filterbanks and frames has been discussed and
analyzed; see for example [4, 8, 9]. Here we introduce the
basic concepts of frame theory. We consider the case where
we have a wavelet system with dilation 2 and 3 wavelets
defining the following spaces:

Vj = Span
n

{φ(2jt− n)},

Wi,j = Span
n

{ψi(2
jt− n)}, i = 1 . . . 3

with

Vj = Vj−1 ∪W1,j−1 ∪W2,j−1 ∪W3,j−1.

The corresponding scaling function and wavelets satisfy the
following multiresolution equations:

φ(t) = 2
∑

n

h0(n)φ(2t− n),

ψi(t) = 2
∑

n

hi(n)φ(2t− n), i = 1 . . . 3.

We say the filters {h0, h1, h2, h3} define a perfect recon-
struction tight frame when the following equations are sat-
isfied:

3∑

n=0

Hn(z)Hn(z−1) = 1,

3∑

n=0

Hn(−z)Hn(z−1) = 0.

In general, the filters are given as follows:

H0(z) =
(
1 + z−1

)K0

Q0(z)

Hl(z) =
(
1− z−1

)Ki

Qi(z), i = 1 . . . 3.



2.1. Length of Lowpass Filter h0

From [16] we know that the minimum length of the lowpass
filter in a tight frame is lengthh0 ≥ K0+min{K1,K2,K3}.
The case of dyadic tight frame symmetry results in [1]:

lengthh0 ≥ K0 + 2 min{K1,K2,K3} − 1.

2.2. Smoothness vs. K0

One of the advantages of tight frame filterbanks is the possi-
bility of achieving high K0 with an accompanying high de-
gree of smoothness ν2 without a necessarily large support of
h0, as will be shortly seen. It is shown in [18] that the high-
est possible derivative, ν2, for a scaling function φ(·) given
the corresponding h0(n) is bounded by ν2 < K0. Smooth-
ness is measured using the Sobolev exponent of a scaling
function φ, defined as [11, 21]:

ν2(φ) := sup{ν2 :

∫ ∞

−∞

|Φ(ω)|2(1 + |ω|2)ν2dω <∞}.

The actual computation of ν2 is found using [13], and for
the normalization

∑
n h0(n) = 1 we have

ν2 = −1

2
− 1

2
log2 λmax

where λmax is the largest eigenvalue of a matrix generated
by (c2i−j)−N≤i,j≤N with c(z) = Q0(z)Q0(z

−1) andQ0(z)
known from H0(z) = (1 + z−1)K0Q0(z).

3. EXAMPLE I

We consider the case of the tight frame symmetric filters
{h0, h1, h2, h3} with the moments {K0,K1,K2,K3} =
{5, 3, 2, 3}. In addition, we have lengthh0 = lengthh1 =
8, and lengthh2 = lengthh3 = 6. The filters coeffi-

n h0(n) h1(n)
0 −5/28

−5/28

1 −7/28
−7/28

2 35/28 35/28
· 11

3 105/28 665/28
· 11

4 105/28
−665/28

· 11
5 35/28

−35/28
· 11

6 −7/28 7/28

7 −5/28 5/28

n h2(n) h3(n)

0 −5
√

35/25
· 11 −25

√

7/27
· 11

1 −7
√

35/25
· 11 −35

√

7/27
· 11

2 3
√

35/25
· 11 115

√

7/27
· 11

3 3
√

35/25
· 11 −115

√

7/27
· 11

4 −7
√

35/25
· 11 35

√

7/27
· 11

5 −5
√

35/25
· 11 25

√

7/27
· 11

Table 1: Coefficients withK0 = 5, K2 = 2,K1 = K3 = 3.
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Figure 1: Filters corresponding to {K0,K1,K2,K3} =
{5, 3, 2, 3}
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Figure 2: Scaling and wavelet functions corresponding to
{K0,K1,K2,K3} = {5, 3, 2, 3}



cients are listed in table 1. It is interesting to note that the
coefficients of h0 and h1 are rational and those of h2 and
h3 are rational within a constant, namely

√
35 in the case of

h2 and
√

7 for the case of h3. In figure 2 we show the re-
sulting scaling and wavelet functions. Notice how the cen-
ters of the wavelets corresponding to ψ2 and ψ3 are shifted
by 1/2 relative to the scaling function φ and the wavelet
ψ1. The scaling function smoothness coefficient is given by
ν2 ≈ 3.2596.

4. EXAMPLE II

We consider in this example the case of the symmetric fil-
terbank with {K0,K1,K2,K3} = {7, 3, 2, 3}. From the
resulting 80th degree Gröbner basis we obtain six reduced
and distinct Gröbner bases. We thus obtain a filterbank with
lengthh0 = lengthh1 = 12, and lengthh2 = lengthh3 =
8. The corresponding coefficients are listed in table 2. The
scaling function φ has smoothness given by ν2 ≈ 4.8794.

As an application example, we consider noise removal
from an image. The noise is assumed to be white, Guassian
distributed. We use soft threshold approach to remove the
noise. Soft thresholding is defined as follows:

x̂ = sgn(x) (|x| − η)
+

where η is the estimate of the noise, given by η =
√

2σn and
where σn is the standard deviation of the first stage outputs
due to h1(n1)h3(n2), h2(n1)h3(n2) and h3(n1)h3(n2). The
measure of performance used in this paper is peak signal to

noise ratio, given by PSNR = 10 log10

(
255

2

MSE

)
, with

MSE =
1

M2

∑

m,j

|x(m, j)− x̂(m, j)|2,

and where x is anM×M image and x̂ is the output. For the
case of σn = 0.05 we have an image improvement reflected
by PSNR = 79.87, up from PSNR = 74.19 for the noisy
image. Fig. 5 depicts the noisy image (top) and the denoised
image (below). Similarly, we consider the case where we
have noise given by σn = 0.075, and where the noisy image
now has PSNR = 70.66. Then the resulting image has
PSNR = 77.75. Table 3 shows a denoising comparison
with published symmetric filterbanks.

5. CONCLUSION

In this paper we have introduced a family of filterbanks
with various lengths filters designed using Gröbner basis
method. Clearly, tight frame filterbanks offer more design
degrees of freedom than the orthogonal counterpart. This
in turn allows for additional properties such as smoothness
and symmetry. Example II shows the performance of such
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Figure 3: Filters corresponding to {K0,K1,K2,K3} =
{7, 3, 2, 3}
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Figure 4: Scaling and wavelet functions corresponding to
{K0,K1,K2,K3} = {7, 3, 2, 3}



Figure 5: Noisy image with σn = 0.050 (top) and the same
image with noise removed using soft threshold approach
coupled with the filterbank depicted in table 2

n h0(n) h1(n)
0 0.000187362 0.000187362
1 −0.006273849 −0.006273849
2 −0.026554550 −0.026554550
3 −0.002060988 −0.002060988
4 0.162938324 0.182947735
5 0.371763701 −0.298252754
6 0.371763701 0.298252754
7 0.162938324 −0.182947735
8 −0.002060988 0.002060988
9 −0.026554550 0.026554550

10 −0.006273849 0.006273849
11 0.000187362 −0.000187362

n h2(n) h3(n)
0 0.004103571 0.003056349
1 −0.137408374 −0.102342055
2 −0.096237751 0.049142155
3 0.229542553 0.342889367
4 0.229542553 −0.342889367
5 −0.096237751 −0.049142155
6 −0.137408374 0.102342055
7 0.004103571 −0.003056349

Table 2: Coefficients withK0 = 7, K2 = 2,K1 = K3 = 3.

Figure 6: Noisy image with σn = 0.075 (top) and the same
image with noise removed using soft threshold approach
coupled with the filterbank depicted in table 2

Table 3: PSNR in dB resulting from soft thresholding of Lena
image with noise varianceσ2

n using various filterbanks. The first
TF column reflects the performance of the filterbank of example
II.
σn TF TF a 7/9 b 9/15 c 6/10 d 10/18 e

0.050 79.87 79.68 79.50 79.59 79.66 79.44
0.075 77.75 77.60 77.43 77.47 77.45 77.29
0.100 76.19 76.07 75.68 75.87 75.85 75.78

a[5]
b[9, table 8.3]
c[9, table 8.5]
d[19, table 2]
e[10, table 3]



a filterbank in noise removal applications when compared
with published symmetric filters. It is clear that the noise
removal approach used in this paper is basic, and better ap-
proaches exist. However, the purpose of the example is to
depict the performance of the filterbanks discussed in the
paper with such applications as noise removal. It would be
interesting to couple the filterbanks discussed in this paper
with more sophisticated noise removal approaches.
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Gröbner Bases. American Mathmetical Society, 1994.

[3] H. Bölcskei and F. Hlawatsch. Oversampled filter
banks: optimal noise shaping, design freedom, and
noise analysis. In Proc. IEEE Int. Conf. Acoust.,
Speech, Signal Processing (ICASSP), volume 3, pages
2453–2456, 1997.

[4] H. Bölcskei, F. Hlawatsch, and H.G. Feichtinger.
Frame-theoretical analysis of oversampled fil-
ter banks. IEEE Trans. on Signal Processing,
46(12):3256–3268, December 1998.

[5] C.K. Chui and W. He. Compactly supported tight
frames associated with refinable functions. Applied
and Computational Harmonic Analysis, 8:293–319,
2000.

[6] D. Cox, J. Little, and D. O’Shea. Ideals, Varieties, and
Algorithms: An Introduction to Computational Alge-
braic geometry and commutative algebra. Springer-
Verlag, 1991.
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