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Abstract Median filtering is a well-known method used
in a wide range of application frameworks as well as a
standalone filter, especially for salt-and-pepper denoising.
It is able to highly reduce the power of noise while min-
imizing edge blurring. Currently, existing algorithms and
implementations are quite efficient but may be improved
as far as processing speed is concerned, which has led us
to further investigate the specificities of modern GPUs. In
this paper, we propose the GPU implementation of fixed-
size kernel median filters, able to output up to 1.85 billion
pixels per second on C2070 Tesla cards. Based on a Branch-
less Vectorized Median class algorithm and implemented
through memory fine tuning and the use of GPU registers,
our median drastically outperforms existing implementa-
tions, resulting, as far as we know, in the fastest median filter
to date.

Keywords Median · Filter · GPU

1 Introduction

First introduced by Tukey in [6], the median filter is a
simple process which consists, for each pixel of an image,
in replacing its gray-level value by the median value of
its neighbors, taken in a n = k × k window centered on
this very pixel. Median filtering has been widely studied
since then, and many researchers have proposed efficient
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implementations of it, adapted to various hypothesis, archi-
tectures and processors. Originally, its main drawbacks
were its compute complexity, its non linearity and its
data-dependent runtime. Several researchers have addressed
these issues and designed, for example, efficient histogram-
based median filters featuring predictable runtimes [3, 7].
More recently, authors have managed to take advantage of
the newly opened perspectives offered by modern GPUs, to
develop CUDA-based filters such as the Branchless Vector-
ized Median filter (BVM) [2, 4] which allows very interest-
ing runtimes and the histogram-based, PCMF median filter
[5] which was the fastest median filter implementation to
our knowledge.

The use of a GPU as a general-purpose computing pro-
cessor raises the issue of data transfers, especially when
kernel runtime is fast and/or when large data sets are pro-
cessed. In certain cases, data transfers between GPU and
CPU are slower than the actual computation on GPU,
even though global GPU processes can prove faster than
similar ones run on CPU. So as to obtain high through-
put values, it is therefore critical to address both sides
of the problem: data transfers and GPU kernel intrinsic
performance.

In the following section, we detail our implementation
of the median filter, called PRMF for Parallel Register-
only Median Filter. For more concision and readabil-
ity, our coding will be restricted to 8 or 16 bit gray-
level input images whose height (H) and width (W) are
both multiples of 512 pixels. Let us also point out that
the following implementation, targeted on NVidia Tesla
GPU (Fermi architecture, compute capability 2.×), may
easily be adapted to other models e.g. those of compute
capability 1.3.
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2 Implementing a Fast Median Filter

2.1 Basic Principles

Designing a 2-D median filter basically consists in defining
a square window H(i, j) for each pixel I (i, j) of the input
image, containing n = k × k pixels and centered on I (i, j).
The output value I ′(i, j) is the median value of the gray
level values of the k × k pixels of H(i, j). Figure 1 illus-
trates this principle with an example of a 5×5 median filter
applied on pixel I (5, 6).

Obviously, one key issue is the selection method that
identifies the median value, which can be done using
either histogram-based or sorting methods. But, as shown
in Fig. 1, since two neighboring pixels share part of the
values to be sorted, a second key issue is how to rule redun-
dancy between consecutive positions of the running window
H(i, j).

2.2 Data Transfers

CUDA-enabled devices offer several memory types, each
with its own levels of latency and speed. The most ver-
satile is the generic global memory, but it is also the one
with the highest latency value (around 400 clock cycles)
and its transfer rate is subject to access pattern constraints.
Among other memory types, only constant memory and tex-
ture memory are usable to store data from CPU memory.
On CPU side, CUDA langage extension features a memory
allocation function able to allocate non-pageable memory
called pinned-memory, which is an efficent alternative to
classical allocation as it allows more direct access to stored
data. The drawback is that it has to be use sparingly in
order to avoid an early memory overflow. Benchmarking all
possible combinations led us to adopt the memory manage-
ment described in Algorithm 1. Input image data is stored
in the GPU’s texture memory so as to benefit from the 2-D

Figure 1 Illustration of 5 × 5 median filtering, applied on pixel of
coordiantes (5,6). Bottom right: window overlapping.

caching mechanism which transparently preloads neighbor
pixel values when fetching one particular pixel. It reduces
memory access latency. After kernel execution, copying out-
put image back to CPU memory is done by use of pinned
memory, which drastically accelerates data transfer (see
Tables 1 and 2 for precise timings).

2.3 Using Registers

As register access is at least 20 times faster than all the
other memory types available on the GPU, it is natural to
try to use them as a mean to store temporary data inside
our kernels, keeping in mind that on the fermi architecture,
each individual thread can use a maximum of 63 regis-
ters within the limit of 32K per thread block. However, it
must be noticed that a high register usage, though below
the above-cited limits, may result in a loss of performance
due to a lower parallelism level inside each block, i.e. less
threads actually run in parallel. Consequently, it remains
important to use registers sparingly in order to preserve
high pixel throughput values: to do so, we use the forgetful
selection algorithm. Its principle is to construct a list of Rn

pixels values, taken among the n = k × k ones of the win-
dow. Then we identify and eliminate (forget) both elements
showing the maximum and the minimum values in the list.
Finally, we include one of the values left apart of the orig-
inal list. This process is repeated until no more value can
be included in the list. The remaining element in the list is

Table 1 Time cost of data transfer for each image size in 8 bit
gray-level format on C2070 GPU. In column Gmem, simple global-
memory-only transfers times are shown for comparison.

time costs→ to GPU from GPU Total Gmem

image size↓ (ms) (ms) (ms) (ms)

512×512 0.08 0.06 0.14 0.23

1024×1024 0.24 0.19 0.43 0.81

2048×2048 0.85 0.68 1.53 2.15

4096×4096 3.27 2.61 5.88 7.10
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Table 2 Time cost of data transfer for each image size in 16 bit
gray-level format on C2070 GPU. In column Gmem, simple global-
memory-only transfers times are shown for comparison.

time costs→ to GPU from GPU Total Gmem

image size↓ (ms) (ms) (ms) (ms)

512×512 0.14 0.10 0.24 0.42

1024×1024 0.45 0.35 0.80 1.23

2048×2048 1.59 1.32 2.91 3.83

4096×4096 6.21 5.21 11.42 13.16

the global median value. Two important points should be
notice:

– this algorithm has a fixed number of steps, equals to(
n− �n2 �

)
, which implies that all threads have almost

the same workload, despite the data dependency of the
extrema identification step.

– for small windows, the whole original list can be put in
registers.

The number Rn of elements in the initial list is chosen
as the minimum element count which allows to identify
the global median value through the above process. It is
obtained by considering the constraint of keeping the global
median in the list at each elimination step. This lead to:

Rn =
⌈n

2

⌉
+ 1 (1)

which represents the minimum register count needed to
perform the forgetful selection (one register per element).
It is also noticeable that the second and following elimi-
nation steps use less registers than Rn as two elements are
eliminated and one element added at each step.

Figure 2 illustrates the forgetful selection process applied
to a 3 × 3 pixel median filter. For clarity reasons, the nine
values have been represented in a row. The process begins
with R9 = 6 elements and ends after 4 iterations, when
there is no more candidate element. This also corresponds
to the state where there is only one element in the list: the
median value. The selection of both extrema is implemented
through a basic 2-element swapping function, which will be
detailed in the following. This ensures that the GPU kernel
code is free of divergent branches liable to severely impact
performances.

2.4 Hiding Latencies

Optimizing a GPU kernel also means hiding latencies
potentially generated by memory accesses and data depen-
dent instruction calls. Indeed, modern GPUs are able to
pipeline instruction processes so as to reduce the average

Figure 2 Determination of the Median value by the forgetful selection
process, applied to a 3 × 3 neighborhood window.

latency of an instruction sequence: this capability is called
ILP (Instruction Level Parallelism). As for global memory
accesses, when two or more consecutive arithmetic opera-
tors manipulate (read or write) independant variables, only
the first access generates latency. The massive thread par-
allelism of CUDA-enabled devices helps in hiding those
latencies transparently but, analysing the actual computa-
tion performed by each thread, optimization may be taken a
few steps further:

First, we maximize the Instruction Level Parallelism
inside the forgetful selection method by re-arranging the
instruction sequence of an incomplete sorting network [1]
so as to reduce the data dependency of consecutive instruc-
tions and thus preventing frequent empty pipelines. Figure 3
shows the scheduling of the first extrema identification step
of a 5×5 median filter, carried out with R25 = 14 elements.
Each arrow represents one call to the 2-element swapping
function: after the call, the starting point symbolizes the
lowest value element and the ending arrow points out the
highest one. In addition, horizontal dashed lines separate
packs of independants instructions.This clearly maximizes
the ILP.

Second, in order to reduce the effect of global mem-
ory access latency, each thread performs the computation of
two neighbor input pixels instead of just one. Additionally,
window overlapping is exploited in order to minimize the
increase of register count per thread brought by this 2 pixels

Author's personal copy



188 J Sign Process Syst (2014) 75:185–190

Figure 3 First extrema identification step of the forgetful selection,
applied to a 5 × 5 median filter. It begins with R25 = 14 unsorted
elements and ends with the minimum value at the first position (left)
and the maximum at the last position (right).

per thread rule. The register count per thread block is eas-
ily kept unchanged by dividing the block size by 2, while
preserving the grid size. Trying to benefit from overlapping
cannot be achieved by additional computation after identi-
fication of the first median values, as it can be done with
histogram-based solutions. Instead, both selections have to
be carried out in parallel.

Considering that the Rn elements of the first selection
step can be taken anywhere in the window, we begin the
selection with Rn elements, choosen among those shared by
both windows. This only makes sense if two consecutive
windows share at least Rn elements, which obviously is the
case as they actually share Sn = n − k = n − √

n pix-
els, which is always greater than Rn (or equal for the 3 × 3
median filter (n = 9).

The (Sn − Rn + 1) first selection steps can then be
considered common to both windows, leaving only the k
non-shared pixels of each window to be processed sepa-
rately. This technique saves k + 1 registers for each pair of
input pixels, which means that each thread block now uses
fewer registers while processing the same pixel count, thus
allowing a higher level of parallelism. Figure 4 illustrates
this by representing the different classes of pixels in the
5 × 5 median example: the first R25 = 14 common pixels
are used to generate the vector to be sorted at the first step,
6 more steps are carried out with the remaining common
pixels before entering into separate sorting processes.

3 Results

Runtimes have been obtained by averaging 1000 execu-
tions on a C2070 GPU card hosted by a system with

Figure 4 Reducing register count in a 5×5 register-only median ker-
nel processing 2 input pixels. The first 7 forgetful selection steps are
common to both processed center pixels: the first one needs 14 pixels,
leaving 6 more pixels to be processed one after another.

one Xeon E56202.40GHz processor running a linux kernel
2.6.18 × 86 64 and CUDA v4.0. Each kernel has been run
on 8 bit and 16 bit images of sizes 512×512, 1024×1024,
2048×2048 and 4096×4096. As mentioned in Section 2.2,
our implementation optimizes data transfers: Tables 1, 2 and
3 detail times and relative costs of data transfers between
CPU and GPU. Transfers into texture memory are a bit
slower than those done through pinned-memory but, as
said above, the associated 2D-caching mechanism allow a
great performance improvement of the later data fetching.
The rightmost columns of Tables 1 and 2 allow to com-
pare our way of transferring data against standard global
memory transfers. It reveals that our choices make trans-
fers 15 to 75 % faster than naive ones. In addition, Table 3
shows the relative costs of data transfers against total pro-
cess times. Analysing these values confirms the relevance of

Table 3 Relative cost of data transfers, in percent of total runtime, for
8 and 16 bit gray-level images and run by C2070 GPU.

Window size→ 3×3 5×5 7×7

Image size - depth.↓

5122 8 bits 73 % 44 % 20 %

16 bits 82 % 57 % 29 %

10242 8 bits 68 % 37 % 15 %

16 bits 80 % 53 % 25 %

20482 8 bits 66 % 34 % 14 %

16 bits 79 % 59 % 23 %

40962 8 bits 65 % 33 % 13 %

16 bits 78 % 50 % 23 %
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our approach: data transfers between CPU and GPU repre-
sents at least 13 % of the total runtime, for 8 bit large image
and window sizes, but up to 82 % for 16 bit small image
and window sizes. Consequently, it had to be minimized as
much as possible.

Like many authors, we have used the pixel through-
put value as our main performance indicator. It includes
kernel runtime as well as transfer times to and from the
GPU. To evaluate the absolute performance of our imple-
mentations, we have also measured the maximum effec-
tive pixel throughput that our GPU/host couple is able
to achieve. Knowing such a peak value helps in deciding
on further investigation. We performed this measurement
by running a dummy kernel that fetches the gray-level of
each pixel in texture memory and outputs it into global
memory exclusive of any other instruction. Running the
dummy kernel on all image sizes and depths brought the
peak values gathered in Table 4, which shows that the
larger the image is, the higher the expected throughput
is. Kernel runtimes and throughtput values are presented
in Table 5, with separate global throughput values for
8 and 16 bit depths (T8 and T16) as transfer time costs
vary, while kernel runtime is not influenced by the gray-
level depth. Though our implementation does not show a
constant runtime, but follows a classical n.log(n) law, it
proves from 5.3 to 10 times faster than the one in second
position and can achieve up to 1850 Mpix/s. It is con-
firmed by Fig. 5 which compares the throughput values
of several implementations against ours for common small
window sizes. Moreover, focusing on the 3 × 3 median
filter, the actual pixel throughput achieved by our imple-
mentation reaches more than 75 % of the absolute peak
throughput value.

It is also noticeable that our kernel algorithm is quite
similar to the one implemented in ArrayFire (at least for
3 × 3 median filter). That led us to try and find out what
had brought such high speedup in our implementation. For
this purpose, we inserted the 3 × 3 ArrayFire median fil-
ter in our own coding structure in order to benefit from the

Table 4 Maximum effective pixel throughput values for T8 and T16
(in Mpixel per second) on C2070, achieved when processing 8 and 16
bit gray-level images.

Gray-level format→ T8 T16

image size↓

512×512 1598 975

1024×1024 2101 1200

2048×2048 2359 1308

4096×4096 2444 1335

Table 5 Kernel runtimes and global pixel throughput of fast median
kernels processing 8 and 16 bit gray-level images and run by C2070
GPU.

Window size→ 3×3 5×5 7×7

Image size - perf.↓

5122 t (ms) 0.05 0.19 0.60

T8 (Mpix/s) 1291 773 348

T16 (Mpix/s) 865 607 307

10242 t (ms) 0.20 0.74 2.39

T8 (Mpix/s) 1644 889 371

T16 (Mpix/s) 1045 692 329

20482 t (ms) 0.79 2.95 9.53

T8 (Mpix/s) 1805 936 379

T16 (Mpix/s) 1130 729 338

40962 t (ms) 3.17 11.77 38.06

T8 (Mpix/s) 1854 951 382

T16 (Mpix/s) 1151 738 340

optimal data transfers. Little kernel modifications had also
been done to allow the fetching of data from texture
memory. This setup allows ArrayFire kernel to achieve
670 Mpix/sec, i.e. 3.7 times higher than the original. The
remaining ×2.7 speedup is then brought by our kernel
implementation itself.

Figure 5 Pixel throughput value comparison, in million pixels
per second, of several implementation against our PRMF. From
left to right: PCMF, BVM, PRMF, ArrayFire (impossible with
4096×4096). a 512 X 512 pixel input image. b 4096 X 4096 pixel
input image.
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4 Conclusion

We proposed a very high speed, small window median
filter which makes it possible to process, for example,
almost 900 high definition (1080p) images per second. Due
to the lack of available source code, our comparison is based
on the most recent results published in [5], obtained with the
same GPU as ours and with 8 bit-coded gray-level images.
While the algorithm implemented here is similar to the one
in ArrayFire, the main difference resides in our fine tun-
ing of the implementation, on both data transfers and kernel
side, that leads to the fastest GPU median filter known to
date with 1854 Mpix/s. Let us also note that such con-
siderable throughput values come very close to the peak
effective pixel throughput value of 2444 Mpix/s allowed by
our developpement platform. Consequently further investi-
gation would likely bring little performance improvement.
Other types of algorithms can benefit from all or at least part
of these optimizations, mainly the memory management. As
we did with convolution filters, which is the subject of a next
publication, all linear or non-linear neighborhhod filters can
be successfully treated that way.
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