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Abstract— In this paper we present a fast new fully dynamic
algorithm for the st-mincut/max-flow problem. We show how
this algorithm can be used to efficiently computeMAP solutions
for certain dynamically changing MRF models in computer
vision such as image segmentation. Specifically, given thelstion
of the max-flow problem on a graph, the dynamic algorithm
efficiently computes the maximum flow in a modified version
of the graph. The time taken by it is roughly proportional to
the total amount of change in the edge weights of the graph. |
Our experiments show that, when the number of changes in |
the graph is small, the dynamic algorithm is significantly fester
than the best known static graph cut algorithm. We test the
performance of our algorithm on one particular problem: the

Fig. 1. Dynamic image segmentation using Graph Cuts. The images in

object-background segmentation problem for video. It shold be
noted that the application of our algorithm is not limited to the
above problem, the algorithm is generic and can be used to ik
similar improvements in many other cases that involve dynarit
change.

Index Terms— Energy Minimization, Markov Random Fields,
Dynamic graph cuts, Maximum flow, st-mincut, Video segmen-
tation.

I. INTRODUCTION

the first and third column are two consecutive frames of aoidequence
and their respective segmentations. The first image in tisé ¢olumn also
shows the user segmentation seeds (pixels marked by blackgfound) and
white (foreground) colours). The user marked image pixetsused to learn
histograms modelling foreground and background likelif®das in [4]). In
column 2, we observe the n-edge flows obtained corresponditige MAP
solutions of theMRFs used for formulating the image segmentation problem
on the two frames. It can be clearly seen that the flows coomdipng to
the two segmentations are similar. The flows from the firsteegation were
used as an initialization for the max-flow problem correggiog to the second
frame. The time taken for this procedure was much less thant#ken for
finding the flows from scratch.

Graph cuts have been extensively used in computer vision to
compute the maximum a posteriori (MAP) solutions for vari-

ous discrete pixel labelling problems such as image retsora

segmentation, voxel occupancy and stereo [17], [18], [sz
[26]-[30], [36], [38]. One of the primary reasons behindithe

[16] and [30]). This equivalence between st-mincut and MAP-
RF estimation makes graph cuts extremely important.
In many real world applications, multiple similar instasce

growing popularity is the availability of efficient algdnins ©f @ problem need to be solved sequentially e.g. performing
with low polynomial time algorithmic complexity for com- IMage segmentation on the frames of a video. The data (image)
puting the maximum flow (max-flow) in graphs of arbitrary”_th's problem_ changes_ from one time instance to the next.
topology [1], [5]. These algorithms enable fast computatid Given the solution to an instance of the problem, the questio
the minimum cost st-cut (st-mincut) problem, which in tur@fiSeS as to whether this solution can help in solving other
allows for the computation of globally optimal solutiong foSimilar instances. In this paper we answer this particular
important classes of energy functions [12], [14], [16], Jj23 duestion fqr_ energies that can be solved_ exactly using graph
[25]. This includes sub-modular functions of binary randorfuts: Specifically, we show how the solution to the max-flow
variables which have been successfully used for formgatiRroblem corresponding to an MRF can be used in solving
a wide range of problems [4], [32]. anothersimilar MRF with slightly different energy terms.

Greig et al. [14] were one of the first to use graph cuts Our algorithm records the flow obtained during the compu-
in computer vision. They showed that if the pairwise poterf@tion of the max-flow corresponding to a particular problem
tials of a two labelpairwise Markov Random Field (MRF) instance. This recorded flow is used as an initializatiorhin t
were defined as an Ising model, then the exact maximumR§ocess of finding the max-flow solution corresponding to the
posteriori (MAP) solution can be obtained in polynomialdim New problem instance (as seen in figure 1). Our algorithm
by solving a st-mincut problem. The use of Graph cuts hhelongs to a broad category of algorithms which are refeoed

since been extended to MRFs with multiple labels (see [g}Sdynamic These algorithms solve a problem by dynamically
updating the solution of the previous problem instance.fThe

goal is to be more efficient than a recomputation of the smiuti
after every change from scratch. Given a directed weighted
graph, afully dynamic algorithm should allow for unrestricted
modification of the graph. This involves addition and deleti
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of nodes and edges in the graph as well as modification of thye usingrecycledsearch trees. The procedure for performing

cost (capacity) of any graph edge. image segmentation on video sequences is described inrsecti
Overview of Dynamic Graph Cuts: Dynamic algo- VII-A. In the same section we compare the performance of

rithms are not new to computer vision. They have beeayur dynamic algorithm with that of the st-mincut algorithm

extensively used in computational geometry for problenthisudescribed in [5].

as range searching, intersections, point location, cohwix

proximity and many others. For more on dynamic algorithms Il. PRELIMINARIES

used in computational geometry, the reader is referred]to [8 In this section we orovide a general overview of the

A number of algorithms have been proposed for the dynamic—mincut/maxflow robFI)em and gi]ve the notation used in

mincut problem. Thorup [33] proposed a method which he} A di tpd ; ,ht d 9 V. E.C) with i

a O(y/m) update time and took @fgn) time per edge to € paper. rected weighte gragh(V, £, C') with non

list the cut edges where and m are the number of nodesnegat've edge weights, is defined by a set of nodes set

: . f directed edged”, and an edge cost functiodi : £ — R
and edges in the graph respectively. However, the dynarr% . . 3 .
st-mincutproblem has remained relatively ignored. Wﬁ'Ch maps each edge, () to a real number;;”. We will
usen andm denote the number of nodéls| and the number

Gallo et al. [13] introduced the problem of parametricf d Elin th h velv. Graph din th
max-flow and used a partially dynamic graph cut algorithr?\ edges|E| in the graph respectively. Graphs used in the st-

for the problem. Their algorithm had a low polynomial timemmCUt problem have certain special nqdes called the tead_min
complexity but was unable to handle arbitrary changes des, namely the soureg gnd the sm.k%t.'The edgeg |r.1

the graph. Recently, Cohen and Tamassia [9] proposeot graph_ can be divided into two d.'slomt categories: t-
dynamic algorithm for the problem by showing how dynamig ges which connect a node to a terminal node, and n-edges

expression trees can be used for maintaining st-mincuts wihich connect nodes other than the terminal nodes with each

O(log m) time for update operations. However, their algorith thr. We malfe. the following .assumpt|or?s In our notation:
could only handle series-parallel diagrahhs G,j) € E= (j;1) € B, and(s,)) €E A (i,t) € Bforall
Boykov and Jolly [4] were the first to use partially ° € V. These gssumptlons are ljon-restnctlve as edges with
dynamic st-mincut algorithm in a vision application by posp zero edge weights are a_lloweq i our formulaﬂon. Thus we
ing a technique with which they could update capacitiecaan °°”f9rm to our notation without chapgmg the problem.
of t-edges ofcertain graph edges, and recompute the st- A Cutis a partition of the node set’ into two partsS
mincut dynamically. They used this method for performin nd S = ,V — 5 apd Is defined by the set of gdgqsyb
interactive image segmentation, where the user could ivepr uch that € S andj € 5. The cost Of_ the cutg, S). IS given
segmentation results by giving additional segmentatioescl?S: Cs.5 = 2ies,jes Cij- An st-cut Is a cut satisfying the
(seeds) in an online fashion. Specifically, they describedPEoPertiess € S andt < 5. Given a directed weighted graph
method for updating the cost of t-edges in the graph. G, the st-mincut problem is that of finding a st-cut with .th(_e
In this paper we present a new fully dynamic algorithrﬁme}”eg cost. By thg Ford-Fqugrson theorem [11], this is
for the st-mincut problem which allows for arbitrary chasgeEQUNa'?nt to computing the maximum flow from the source
in the grapR. We show how this algorithm can be used® the sink with the capacity of each edge equatfo[1].
to dynamically perform MAP inference in an MRF. Such _ Formulating The Max-Flow Problem: For a network
an inference procedure is extremely fast and has been ugd’> ££) with a non-negative capacity; associated with each
for a number of problems [7], [15], [21]. Recently, Juasdge, the max-flow problem is to find the maximum flgw
and Boykov [19] proposed an algorithm in which instead dfom the source node to the sink node subject to the edge
reusing flow they reused the st-mincut solution correspondirfgPacity and mass balance constraints:

to the previous MRF instance to generate an initialization. 0< f. <eco Vi) e E. and 1

Organization of the Paper: An outline of the pa- Shise Vij) ek, )
per follows. Section Il provides an overview of the st- Z (foi — fiz) =0 Vz € V\{s,t} @)
mincut/maxflow problem. In section Ill we show how MRFs ic N(x)

can be used to formulate labelling problems such as image ) . . .
segmentation. The procedure for minimizing energy fumstio WHere fi; is the flow from node to node;j and N (z) is the
using graph cuts and the relationship between energy ghbourhood of: i.e. N(z) consists of all nodes connected
graph reparameterization is explained in section IV. ®ectj?y an edge ta [1]. o _

V shows how MAP solutions of dynamically changing MRFs Observe that we can initialize the rovys in the t—edges of
can be efficiently computed by reusing flow. Specificallygit d @1 nodex of the graph asfy, = fu = min(csz, czr). This
scribes how the residual graph can be transformed to reflect £0T€SPonds to pushing flow through these edges from the
changes in the original graph using graph reparametesizatiS°U"c® tg the sink and has no .eff'ect on the final solution of
and discusses issues related to the computational corypleff€ Stmincut problem. From this it can be deduced that the
of the algorithm. In section VI, we describe how the procdss §°ution of the st-mincut problem is invariant to the abselu
recomputing the st-mincut/max-flow can be further optirdize/@lue Of the terminal edge capacities, and c;,. It only
depends on the difference of these capacities — cs.).

1Series-Parallel digraphs are graphs which are planar,liacgod con-
nected. 3In the paper we restrict our attention to edge cost functisithe form
2The first version of this paper appeared as [20]. C: E — RtU{0}.



Here 6 is the energy parameter vector defining the MRF
energy and is derived from the data. The energy of a con-
figuration for such a pairwise MRF can be written in terms
of unary and pairwise energy terms as:

Ex|0) = < Pa) + D b(wu, T ) +const  (5)

vEVY UEN,

¥(0) will be used to denote the value of the energy of the
MAP configuration of the MRF and is defined as:

() = min E(x|0). (6)

Source (0) Source (0)

1
sink (1) Sink (1)

Fig. 2. Graph Reparameterization. The figure shows a graph G ita  MRFs for Image Segmentation
reparameterization @ obtained by adding a constait to both the t-edges

of nodeas. Observe that although the cost of the st-mincut in G and G In the context of image segmentatiol, corresponds to
is different, the st-mincut includes the same edges for aibhs and thus the set of all image pixels) is a neighbourhood defined
induces the exact same partitioning of the graph. on this set, each sett, comprises of the label§l;,...,I.}
representing the different image segments, and the random
variables in the setx denote the labelling of the pixels
Adding or subtracting a constant to these capacities ctsange the image. Note that every possible assignment of the
the objective function by a constant and does not effect thgndom variablesc (or configuration of the MRF) defines
overall st-mincut solution as can be seen in figure 2. Sughsegmentation. The image segmentation problem can thus be
transformations result in a reparameterization of thelyam solved by finding the least energy configuration of the MRF.

will be explained later in the paper. The energy corresponding to a configuratorconsists of a
Augmenting Paths, Residual Graphs:Given a flowf;;, likelihood and a prior term as:

the residual capacity;; of an edggs, j) € E is the maximum

additional flow that can be sent from nodé¢o node; using Uy (x) = Z ( (Dlz,) + Z (T, Ty ) +const  (7)

the edgeq(i, j) and (j,¢) or formally r;; = ¢i; — fi; + fii- =y} weN,

A residual graphG(f) of a weighted graphG consists of
the node sel’ and the edges with positive residual capacng
(with respect to the flowf). An augmenting path is a path

from the source to the sink along unsaturated edges of the ¢(D|z,) = —logPr(v € Si|Hy) if 2, =1x. (8)
residual graph.

where¢(D|z,) is the log likelihood which imposes individual
enalties for assigning labél to pixel v and is given by

HereH;, is the RGB distribution foiS,, the segment denoted
by labelly, Pr(v € Sk|Hx) = Pr(I,|Hx) andl, is the colour

I1l. M ARKOV RANDOM FIELDS of the pixel v. The prior ¢(z,,z,) takes the form of a
MRFs for labelling problems are described next followe@Generalized Potts model:

by some examples in vision where dynamic MRFs occur. Ky if 24 # 20,
Consider a random field consisting of a set of discrete b(@u, z0) _{ 0 if zy, =z ©)
random variables{z1,...,z,} defined on the seV, such

In MRFs used for image segmentation a contrast term is
added which favours pixels with similar colour having the
vector x which takes values from the set defined as >3 ¢ label [2] [4] [.6] [17]. This is i_nc_orporated in the engrg
X=X x Xox...x X,. N, will be used to denote the Setfuncuon by r(_adum_ng the _cost W|th|_n the Potts_ model fpr
consisting of indices of all variables which are neighbou% 0 Ia_b_els bemg_ different in propqruon to th_e difference |
of the random variabler, in the graphical model. If each |nten§|t|es of thelr corregpondlng pixels. For instance,the
configurationx is assigned a probabilitPr(x), then the experiments discussed in section VII-A, we use the term
random field defined above is said to be a MRF [37] with (1, v) = Aexp (—gQ(u,v)> 1 (10)
respect to a neighborhootl = {\,|v € V} if and only if it ’ 202 dist(u,v)’
satisfies the positivity propertiyr(x) > 0 vx € &, and the  ypere o2(y, ») measures the difference in the RGB values of
Markovian property: pixelsu andwv, dist(u, v) gives the spatial distance between
Pr(z,|[{zy : u € V—{v}}) = Pr(z,|{z, : u € N,}) Yo € V. andv ando is a model parameter. This is a likelihood term

(3) (not prior) as it is based on the data. The energy function of

We follow the notation of [22] and formulate the MAP-the MRF now becomes:

MRF estimation problem as an energy minimization problem.

The energy corresponding to a MRF configuratiois defined ¥2(X) = Y <¢(D|Xv) + > (A(D[xu, Xa) + 1 (Xu, X0))
as the negative log likelihood of its joint posterior proliab vey VENy (1)
as:

that each variabler, takes values from the label séX,.
The set of all variables,,Vv € V is represented by the

E(x]0) = —logPr(x|D) — const (4) 4For our experiments, we have used the standard 8-neightdirh
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Fig. 3. Energy minimization using graph cuts. The figure shows hdivitiual unary and pairwise terms of an energy function igkiwo binary variables
are represented and combined in the graph. Multiple edgésd®sn the same nodes are merged into a single edge by addimgmbights. For instance, the
costw; of the edge £, =) in the final graph is equal tow; = 04,0 + 045,00- The cost of a st-cut in the final graph is equal to the enefitfx) of the
configurationx the cut induces. The minimum cost st-cut induces the leasgeronfigurationx for the energy function.

The contrast term of the energy function is defined as cuts. In this section we briefly describe the process of gnerg
(w0) i e minimization. We then explain the concept of Graph Repa-
d(D|xy,xy) = { " 07 it v (12) rameterization which will be used later to explain how we can

Tu = Lo minimize dynamic energy functions.

B. Dynamic Markov Random Fields

It can be observed that the enengly of the MRF defined A EN€rgy Minimization using Graph Cuts
above for the image segmentation problem is dependent orfhe procedure for energy minimization using graph cuts
the dataD (the colour of the pixels of the image to becomprises of building a graph in which each cut defines a
segmented) and the parameters used in the energy functi@onfigurationx. The cost of a cut is equal to the energy
This dependence results in any change in the data causing(x|f) of its corresponding configuratios. Finding the
change in the energy function of the MRF. In many visiominimum cost st-cut in this graph thus provides us with the
problems the data infact does change with time resulting tihe configuration having the least energy. Kolmogorov and
changes in the energy function of the MRF. We refer tdabih [25] showed how and under what conditions energies
MRFs used for formulating such problems as beitygamic like (5) with binary random variables can be minimized ekact
For instance, this is the case when image segmentationufng st-mincuts. Later, [16] defined a set of conditionsesnd
performed on the frames of a video. which problems with multiple labels can be solved exactly.

As the image (data) changes slightly from one frame to We now explain the graph construction for minimizing
the next it might be hoped that the solution of the probleenergies involving binary random variables. These fumctio
at the first frame can be used to speed up computation at treed to be sub-modular to be solved exactly using graph cuts
second. We show that this conjecture is infact correct. ®ye k[3], [25]. We use the notation of [22] and write the MRF
contribution of this paper is the dynamic max-flow algorithnenergy (5) as:
with which a solution of a dynamic MRF can be efficiently

computed using the solution of its previous state (see figure Ex|0) = Oconstt Z Ousidi(av) (13)
1) veV,ieX,
+ Z est;jk(sj(%)(sk(xt)v
IV. ENERGY MINIMIZATION AND GRAPH (s,t)EE,(4,k) € (X5, Xr)

REPARAMETERIZATION whered,,; is the penalty for assigning labeto latent variable

The most probable or the MAP configuration of a MRk, 6,,.,;; is the penalty for assigning labelsand; to the latent

is the configuration having the least energy. Certain ctass@riablesr, andxz; and eachs;(x) is an indicator function,
of energy functions can be minimized exactly using grapkhich is defined as:

5This also holds true for other problems which are formulatsitig MRFs 5; () = 1 if @ =_j; wherej € X
such as the stereo labelling problem. J\Te 0 otherwise.



Source (0) Source (0) Source (0)

1
Sink (1) Sink (1) Sink (1)

Fig. 4. Graph Reparameterization. The figure shows a graph G, itsreparameterizations Gand G along with their respective st-mincuts. The edges
included in the st-mincut are marked by dashed lines. Tharapeterized graphs Gand G, are a results of two different valid transformations of dnap
G. It can be clearly seen that reparameterized graphsa@d G have the same st-mincut as graph G.

The individual unary and pairwise terms of the energyn such areparameterizatiorwe can derive a corresponding
function are represented by weighted edges in the grapfansformation for a graph. Under these transformatioes th
Multiple edges between the same nodes are merged intoeaulting graph will be a reparameterization of the origina
single edge by adding their weights. The graph constructignaph and thus will have the same st-mincut. The graph
for a two node MRF is shown in figure 3. The constarttansformations corresponding to energy transformatjren
term Oconst Of the energy does not depend rrand thus is by equations (14) and (15) are shown in figure 4.
not considered in the energy minimization procedure. The st The transformations given above are not the only way
mincut in this graph provides us with the MAP solution. Théo obtain a reparameterization. In fact pushing flow through
cost of this cut corresponds to the energy of the MAP solutioany path in the graph can be seen as performing a valid
The labelling of a latent variable depends on the terminial it transformation. The residual graph resulting from this flow

disconnected from by the minimum €ut is a reparameterization of the original graph where no flow
was being passed. This can be easily observed from the fact
B. Energy and Graph Reparameterization that the residual graph has the same st-mincut as the drigina

graph. In the next section we show how the property of graph
reparameterization can be used for updating the residaphgr

zations of each other if and only\fr, E(x|01) = E(x|62) [3], - . ;
[22], [31], [34]. Note that this :imply (m|e;213 tha(t LIIQZ)EJd}eib when the original graph has been modified and the st-mincut
' ! ) needs to be recomputed.

labellings x have the same energy under both parameter
vectors#; and#,, and does not imply tha#;, = 65. There
are a number of transformations which can be applied to‘a RECOMPUTINGMAP SOLUTIONS FORDYNAMIC MRFS

energy parameter vectérto obtain its reparameterizatigh This section describes one of the primary contributions

For instance the transformations given as: of this paper. Having shown how energy functions defining

- _ certain pairwise MRFs can be minimized exactly by solving a

Vi Bui=0ui+a, Oconst = Oconst —a@nd (14) gt mincytmaxfiow problem, we now show how this max-flow

Vi, j  Ostij = Ostij + & Oconst = Oconst —  (15)  solution can be used to efficiently solve other MRFs defined

result in the reparameterization of the energy parametgoxe byéumlI%r energyl\tluglc:tlcj)\gs. d M. wh di
As both parametems andd define the same energy function, onsider two Sia an v WNOSE corresponding

the minimum energy labelling for both will be the same i.e. 8N€rgy functionsZ, and £, differ by a few terms. As we
have seen in the previous section this implies that the graph

X" = arg min E(x|0,) = arg min E(x]02) (16) representing energ, i.e. G, differs from that representing

energyk, i.e. G, by a few edge costs. Suppose we have found

This means .that the graphs constructe_d for minimizing tl?ﬁe MAP solution ofM,, by solving the max-flow problem on
energy functions&(x|¢;) and E(x|f;) (using the procedure the graph, and now want to find the solution @f/,. Instead

ex_plamed in the previous subsection) W'!I hgve the same If the conventional procedure of recomputing the max-flow on
mincut. We call these graphs reparameterizations of edr.ot G, from scratch, we perform the computation by reusing the
For any transformation of the energy function which resultﬁaowS obtained while solving//

a

6In our notation, if the node is disconnected from the soune assign it Boykov .and Jolly [4]' in the_ir work on_ i'f]teraCtive imag?
the label zero and one otherwise. segmentation used this technique for efficiently reconmouti

Energy parameter vectofis andé, are called reparameteri-



the MAP solution when only the unary likelihood terms (8Dbserve that updating edge capacities in the residual gsaph
change (due to addition of new hard and soft constraints dy tsimple if the new edge capacityj is greater than or equal to
user). However, they did not address the problem of handlitite old edge capacity;;. This operation involves addition of
changes in the pairwise terms of the energy function whigxtra capacity and thus the flow cannot become inconsistent.
result in changes in the cost of the n-edges of the graph. Otre updated residual capac'vtﬁg is obtained as:

method (explained below) can handle arbitrary changesen th , ,

graph. T = Tij + (¢i; — cig)- (17)

Even if c;j is less thar;;, the procedure still remains trivial
A. Updating Residual Graphs if the flow f;; is less than the new edge capaaify. This is

The flow through a graph defines a residual graph (8&€ to the fact that the reduction in the edge capacity does
explained in section 11). Our algorithm works by updatindgiot affect the flow consistency of the network i.e flofy
the residual graph obtained from the max-flow computation fitisfies the edge capacity constraint (1) for the new edge
graphG, to make it represent,. This is done by reducing capacity. The residual capacity of the edge can still be tegutla
or increasing the residual capacity of an edge accordingeio ficcording to equation (17). The difference in this case as th
change made to its cost going frof, to G. (c” ¢;;) is negative and hence will result in the reduction
While modifying the residual graph certain flows ma)Of the residual capacity. In both these cases, the flow throug
violate the new edge capacity constraints(L). This is bezathe edge remains unchanged ifg. = f;;.
flow in certain edges might be greater than the capacity of The problem becomes complex when the new edge capacity
those edges undef,. To make these flows consistent withe;; is less than the flowf;;. In this case,f;; violates the
the new edge capacities we reparameterize the updated gré@@e capacity constraint (1). To makg consistent, we have
(using reparameterizations described in the previousosgct O retract the excess flowf;; - c;;) from the edge(s, j). At
to make sure that the flows satisfy the edge capacity Conmraithis point, the reader should note that a trivial solution fo
(1) of the graph. The max-flow is then computed on thiis operation would be to push back the flow through the
reparameterized graph. This gives us the st-mincut solutiBugmenting path it originally came through. However such an
of graphG}, and hence the MAP solution of MR/, operation would be extremely computationally expensive. W
We now show how the residual graph is transformed to makéw show how we resolve this inCOﬂSiStency in constant i.e.
such flows consistent. We use the two graph transformatidaél) time.
given in section IV to increase the capacities of edge&jjn ~ The inconsistency arising from excess flow through edge
in which the flow exceeds the true capacity. These transfdf-j) can be resolved by a single valid transformation of the
mations lead to a reparametenza“on of the graphWe can residual graph This transformation is the same as the one
then solve the max-flow on this graph to get the solution §hown in figure 2 for obtaining graph.Grom G, and does
the max-flow onG,,. not change the st-mincut. It leads to a reparameterization o
The various changes that might occur to the graph goife residual graph which has non-negative residual caplacit
from G, to G, can be expressed in terms of changes in tfiée edge(i, J) The transformation involves adding a constant
capacity of t-edges and n-edges of the graph. The methodsdor /ij — ¢;; 10 the capacity of edges, i), (i,7), and(j,t)
handling these changes will be discussed now. Wechs&) and subtractlng it from the residual capacity of edge). The
refer to the new edge capacity of the edgei), 7., and f,, residual capacity;; of edge(j, i) is greater than the flov;;
are used to represent the updated residual capacity and fR#SIng through edge, j). As o is always less tharf;; the
of the edge(s, i) respectively. above transformation does not make the residual capacity of
1) Modifying t-edge CapacitiesOur method for updating €dge(j,) negative. The procedure for restoring consistency
terminal or t-edges is similar to the one used in [4] and i§ illustrated in figure 5.
described below.

The updated residual capacity of an edgei) can be R Complexity Analysis of Update Operations

computed asr =7rg + csz cs;- This can be simplified to:
721 —  fu If the flow f.; is greater than the updated Modifying an edge cost in the residual graph takes constant

edae ca aC|t it violates the edge capacity constraint (1 me. Arbitrary changes in the graph like addition or deleti
9 p 36”’ 9 pactty Af nodes and edges can be expressed in terms of modifying
resulting i mr , becoming negative. To make the flow conS|sten

a constanty — fu — s added to the capacity of both an edge cost. The time complexity of all such changes i9 O(

N st i except for deleting a node where the update time is) ({ere
the t-edgeq (s, 7),(¢,t)} connected to the node As has been . is the degree of the node to be deldted

observed in section 2 and in [4], this transformation is an After the residual graph has been updated to reflect the
example of graph reparameterization which does not changé
anges in the MRF the augmenting path procedure is used to
the minimum cut (it's cost changes but not the cut itself
ind the maximum flow. This involves repeatedly finding paths
For an |IIustrat|on see figure 2. The reS|duaI capacmes thy
with free capacity in the residual graph and saturating them

become: i = = Csi ~ foi v =0 and, i = cie = fu+1 When no such paths can be found i.e. the source and sink are
Tit =Tit — Csi + fst

2) MOdifymg_ n-edge CapacitiesVe now deS(_:ribe how the "The capacity of all edges incident on the node has to be madentgch
residual graph is updated when n-edge capacities are cthangges O{) time per edge.



Capacity of
(1,j) reduces by
3 units

QOriginal Updated Re-parameterized
Residual Graph Residual Graph Residual Graph

Fig. 5. Restoring consistency using Graph Reparameterizatiore flgure illustrates how edge capacities can be made consistéth the flow by
reparameterizing the residual graph. It starts by showingeaidual graph consisting of two nodésand j. obtained after a max-flow computation. For
the second max-flow computation the capacity of edgg) {s reduced by 3 units resulting in the updated residual grap which the residual capacity of
edge ¢, j) is equal to -1. To make the residual capacities positive emarameterize the graph by addimg= 1 to the capacity of edges,(;), (s, ¢) and

(4, t) and subtracting it from the capacity of edgg 4). This gives us the reparameterized residual graph in whkiiehedge flows are consistent with the edge
capacities.

disconnected in the residual graph, we reach the maximwwaved us the cost of creating a new search tree and made our
flow. algorithm substantially faster. The main differences leetw

The maximum flow from the source to the sink is awur algorithm and that of [5] are the presence of the tree
upper bound on the number of augmenting paths found bgstoration stage, and the dynamic selection of active siode
the augmenting path procedure. Also, the total change ie edfye will next describe how the algorithm of [5] works and then
capacity bounds the increase in the flaf defined as: explain how we modify it to recycle search trees for dynamic
graph cuts.

V<> e, —ce,l,  where e; € E

=t A. Reusing Search Trees
o, Vf < M’ Coax WHETe ey = max(|c;i — ¢¢,|)- Thus we
get alooseO(m cmax) bound on the number of augmentation
wherem is the number of edge capacity updates.

The algorithm described in [5] maintains two non-
S()verlapping search trees and T' with roots at the source
and the sink respectively. In tre& all edges from each parent
node to its children are non-saturated, while in tiéedges
VI. OPTIMIZING THE ALGORITHM from children to their parents are non-saturated. The nodes

We have seen how by dynamically updating the residufat are notins or 7' are calledfree. The nodes in the search
graph we can reduce the time taken to compute the st-mind{€sS andT’ can be eitheactive(cangrow by acquiring new
We can further improve the running time by using a technigif&ildren along non-saturated edgespassive The algorithm
motivated by [5]. starts by setting all nodes adjacent to the terminal nodes as

Typ|ca| augmenting path based methods start a new brea(ﬁﬁtive The three basic Stages of the algorithm are as follows:
first search for (source to sink) paths as soon as all paths of a @) Growth Stage: The search trees S and T are grown
given length are exhausted. For instance, Dinic [10] pregosuntil they touch each other (resulting in an augmenting)path
an augmenting path algorithm which builds search trees a nodes becomeassive The active nodes explore adjacent
find augmenting paths. This is a computationally expensi@n-saturated edges and acquire new children from the set
operation, as it involves visiting almost all nodes of thagjr, of free nodes which now become active. As soon as all
and makes the algorithm slow if it has to be performed toteighbours of a given active node are explored the active nod
often. To counter this, Boykov and Kolmogorov [5] proposefiecomes passive. When an active node comes in contact with
an algorithm in which they reused the search tree. In th&rnode from the other tree an augmenting path is found.
experiments, this new algorithm outperformed the bestkno b) Augmentation Stage: In this stage of the algorithm
augmenting-path and push-relabel algorithms on graphs cdiow is pushed through the augmenting path found in the
monly used in computer vision. growth stage. This results in some nodes of the treemnd

Motivated from their results we decided to reuse the searéhbecomingorphanssince the edges linking them to their
trees available from the previous max-flow computation fmarents become saturated. At this point the sink and source
find the solution in the updated residual graph. This teamigand sink search trees have decomposed into forests.



Fig. 6. Segmentation in Videos using user seeds. The first imagesshow
one frame of the input video with user segmentation seeds ki#itk and
white boxes). The image pixels contained in these boxes smé 1o learn
histograms modelling foreground and background likelio0 The second
image shows the segmentation result obtained using thkskhéods with
the method of [4]. The result contains a certain portion o thackground
wrongly marked as the foreground due to similarity in coloTiis error in 2) ryg < ry : The parent of the node is changed to the other
the segmentation can be removed by the user by specifyingdecbastraint. terminal node ‘sink’ §). This means that the node has

This involves marking a set of pixel positions in the wrorighelled region . . .

as background (shown as the checkered region in the secoage)mnThis now become a member of sink tree T. All the immediate
constraint is used for all the frames of the video sequenbe. tfiird image child nodes ofi are then made orphans as they had

is the final segmentation result. earlier belonged the source tree.

The reassignment of parents of updated nodes according to th
above mentioned rules resulted in a moderate but significant
c) Adoption Stage: During the adoption stage the searcimprovement in the results.
trees are restored by finding a new valid parent (of the same2) Dynamic Node ActivationThe algorithm of [5] starts by
set) through a non-saturated edge for each orphan. If marking the set of all nodes adjacent to the terminal nodes as
qualifying parent can be found, the node is made free. active This set is usually large and exploring all its constituent
nodes is computationally expensive. However this is necgss
_ ) as an augmenting path can pass through any such node.
B. Tree Recycling for Dynamic Graph Cuts In the case of the dynamic st-mincut problem however, we
We now explain our method for recycling search trees of tig@n isolate a much smaller subset of nodes which need to be
augmenting path algorithm. Our algorithm differs from tbat explored for possible augmenting paths. The key observatio
[5] in the way we initialize the set of active nodes and in th® be made in this regard is that all new possible augmenting
presence of the Tree restoration stage. paths are constrained to pass through nodes whose edges have
1) Tree Restoration Stag&Vhile dynamically updating the undergone a capacity change. This results in a much smaller
residual graph (as explained in section V) certain edgebef tactive set and makes the max-flow computation significantly
search trees may become saturated and thus need to be deléster. When no changes are made to the graph all nodes
This operation results in the decomposition of the trees intemain passiveand thus our augmenting path algorithm for
forests and makes certain nodaphans We keep track of computing the max-flow takes no time.
all such edges and before recomputing the st-mincut on the
modified residual graph restore the trees by finding a newlvali VII. APPLICATIONS AND EXPERIMENTAL RESULTS

parent for each of them. This process is similar to the adapti  Our dynamic algorithm for the st-mincut problem has been

stage and works as follows. used for a number of problems [7], [15], [21]. Here we
The aim of the tree restoration stage is two fold. Firglemonstrate its performance on the problem of image segmen-

to find parents for orphaned nodes, and secondly but masgion in videos. We provide quantitative results compmita

importantly, to make sure that the length of the path froferformance with the dual-search tree algorithm proposed i

the root node to all other nodes in the tree is as small B which has been experimentally shown to be the fastest for

possible. This is necessary to reduce the time spent passiageral vision problems including image segmentd&tiohie

flow through an augmenting path. Note that longer augmentipgfer this algorithm asstatic since it starts afresh for each

paths would lead to a slower algorithm. This is because theoblem instance.

time taken to update the residual capacities of the edgé®in t The dynamic algorithm which reuses the search trees will

augmenting path during the augmentation stage is propaitiope referred to as theptimizeddynamic graph cut algorithm. It

to the length of the path. should be noted that while comparing running times the time
The first objective of the restoration stage can be met liyken to allocate memory for graph nodes was not considered.

using the adoption stage alone. For the second objective m@rther, to make the experimental results invariant to each

do the following: Suppose nodebelonged to the source treeperformance we kept the graphs in memory.

before the updates. For each graph nedehich has been

affected by the graph updates we check the residual cagmciti

) X . ) . Image Segmentation in Videos
of its t-edges (s, ) or (i,t)). We can encounter the following . . .
tWo cases: The object-background segmentation problem aims to cut

. o out user specified objects in an image [4]. We consider the
1) rs > r : The original parent of the node (in this case,

the source ) is reassigned as the parent of the node. 8For the static algorithm we used the authors original imgietation.

Fig. 7. Segmentation results of the human lame walk video sequence.



case when this process has to be performed over all frameq == ¢ i- aortrm  —— Dynamic aigorthm —=— Dynamic Algorthm
the video sequence. The problem is formulated as follows. (Optimised)

The user specifies hard and soft constraints on the segme
tion by providing segmentation cues or seeds on only the fi 200
frame of the video sequence. Thkeft constraintsare used to
build colour histograms for thebjectandbackground These 150
histograms are later used for calculating the likelihoaunte Time
»(D|f;) of the energy function (11) of the MRF [4] for all| Milliseconds 100
the frames of the video sequence.

Thehard constraints are used for specifying pixel positiong
which are constrained to take a specified lababj€ct or
backgroundl in all the frames of the video sequence. Not
that unlike soft constraints, the pixel positions specifiader

50 4

hard constraints do not contribute in the construction ef tf 16000
colour histograms for theobject and background This is 14000
different from the user-input strategy adopted in [4]. Irr ol 12000
method the hard constraints are imposed on the segmental 10000

py incorporgting t.hem in the .Iikelihood term(D| f;). This Aug':::ﬂ:';’g“;aths 5000 - -
is done by imposing a very high cost for a label assignmg 8000 T
that violates the hard constraints in a manner similar to [4 4000
This method for specifying hard constraints has been chos 2”'3'3 ]

because of its simplicity. Readers should refer to [35] fq
a sophisticated method for specifying hard constraints f
the video segmentation problem. Figure 6 demonstrates
use of constraints in the image segmentation process. The

segmentation results are shown in figure 7. Fig. 8. Running time and number of augmenting paths found by theretiff
algorithms. Observe as the first and second frames of the\sdquence are

. the same, the residual graph does not need to be updatedh wésalts in no

B. Experimental Results augmenting paths found by the dynamic algorithms when segrgeframe

: ; Further, the optimized dynamic algorithm takes no tintecfamputing the
The video Sequences_ used in our tests had bew\_’een é&ﬁnentation for the second image frame asNtieFs corresponding to the
hundred to a thousand image frames. For all the video $gst and second image frames are the same and thus no madifisavere

guences dynamically updating the residual graph produd@ﬁ?ol,er(]j in thke residualngraph andfsearch_trees- However,dmﬂ:] dynamfic
H : rithm takes a small amount of time since it recreatesstch trees for

a decrgase m_the number of augme_ntl_ng paths. Further '&%)ry problem instance from scratch.

dynamic algorithms (normal and optimized) were substan-

tially faster than thestatic algorithm. The average running

times per image frame for the static, dynamic and optimized- )
dynamic algorithms for the human lame walk sequénak figure 8 using a fresh s_earch tree after every graph_up(_iate
size (368x256) were 91.4, 66.0, and 33.6 milliseconds afgfults in fewer augmenting paths. From these results ibinig
for the grazing cow sequence of size (720x578) were 188aPPear that recycling search trees would not yield a sigmific
151.3, and 78.0 milliseconds respectively. The time taken BNProvement in running time. However this is not the case
the dynamic algorithm includes the time taken to recycle thg Practice as seen in figure 9. This is because although the
search trees. The experiments were performed on a Pentiff’Plexity of search tree construction is linear in the nemb
4 2.8 GHz machine. of edges in the graph, the time taken for tree construction is
The graphs in figure 8 show the performance of the aitill substantial. This is primarily due to the nature of gna
gorithms on the first sixty frames of the human lame wal}&sed in computer vision problems. The nu.m'ber of no<_jes/edges
sequence. Observe that the number of augmenting paths follhi€se graphs may be of the order of millions. For instance,
is lowest for the dynamic algorithm, followed by the dynami¥hen segmenting an image of sigé) x 430, max-flow on a
(optimized) and then the static algorithm. This differerge 9raph consisting of roughlg x 10° nodes and more than 2
due to the use of recycled search trees in the optimiz@ﬁ”'on edges needs to be computed. The total time taken for
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algorithm. this operation is 90 milliseconds (msec) out of which almost
15 msec is spent on constructing the search tree.
VIIl. REUSING FLow VS REUSING SEARCH TREES The time taken by the dynamic algorithm to compute the st-

mincut decreases with the decrease in the number of changes
ade to the graph. However, as the time taken to construct
[ﬁe search tree is independent of the number of changes, it
énains constant. This results in a situation where if orfgna
changes to the graph are made (as in the case of min-marginal
computation [21]), the dominant part of computation time is
9Courtesy Derek Magee, University of Leeds. spent on constructing the search tree itself. By reusingchea

In this section, the relative contributions of reusing flovda
search trees in improving the running time of the dynam
algorithm are discussed.

The procedure for constructing a search tree has linear ti
complexity and thus should be quite fast. Further as seen



as sub-modular energy functions of binary variables. The
T raaon results show that our algorithm is substantially fastenttie
Ll 7 best known static st-mincut algorithm. We have demonsirate
' how our method can be used to perform efficient image

segmentation in video sequences in a manner much faster than
previously possible.
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