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Chapter 1

Introduction

1.1 Image Segmentation

Image segmentation is the task of splitting a digital image into one or more regions of interest.

It is a fundamental problem in computer vision and many different methods, each with their own

advantages and disadvantages, exist for the task. Image segmentation is a particularly difficult

task for several reasons. Firstly, the ambiguous nature of splitting up images into objects of

interest requires a trade off between making algorithms more generalized or having many user

specified parameters. Secondly, image artifacts such as noise, inhomogeneity, acquisition artifacts

and poor contrast, are very difficult to account for in segmentation algorithms without a high level

of interactivity from the user.

In this report, segmentation is discussed in a medical imaging context however the proposed

algorithm could equally be used in general purpose segmentations. Segmented images are typically

used as the input for applications such as classification, shape analysis and measurement. In medical

image processing, segmented images are used for studying anatomical structures, diagnosis and

assisting in surgical planning. Before computational algorithms existed, segmentation of medical

images was a tedious process, performed by hand by clinical experts. This was a fairly accurate, yet

slow process. These expert segmentations form the gold standard with which to validate algorithmic

segmentations.

As there is no single general solution to image segmentation problems, several techniques exist

each of which has its own strengths and limitations. Some common techniques are thresholding

based segmentation (discussed in Section 2.2), region based segmentation (i.e. region growing),

1



CHAPTER 1. INTRODUCTION 2

edge based segmentation and deformable active contour models (such the snakes [10] and geodesic

active contour models).

1.2 Motivation

In biomedical image segmentation, there is great interest segmenting three dimensional anatomical

structures from CT, MRI and PET data. General purpose segmentation on the other hand is

typically a two dimensional problem. As a result the data sets used to segment biomedical images

are much larger (O(n3)) than those used otherwise (O(n2)), resulting in computation times an order

of magnitude greater (although this is not true in all cases). In addition to the time complexity

there is also significant storage complexity, for example a very large MRI volume could have as many

as 5123 elements or more, which in combination with large element sizes may result in memory

errors on current available hardware when seeking a large area of contiguous memory to write this

to.

Furthermore, although the level set approach used in this project is very powerful (its advantages

are discussed in Section 2.1), the principal disadvantage of using level sets is that they are relatively

slow to compute.

As a result, processing times in a clinical setting may be impractical with more computation-

ally demanding segmentations requiring many minutes or even hours. This provides us with the

motivation to accelerate these segmentations by using a parallel algorithm executed on the GPU

(Graphics Processing Unit).

1.3 Parallel Processing

The algorithms for processing level sets have vast parallelization potential. Section 3.1 details the

algorithms used to discretize the level set equation and Section 3.3 discusses how these can be

executed on graphics hardware.

1.3.1 GPGPU

General purpose computation on graphics processing units (GPGPU) is the technique of using

graphics hardware to compute applications typically handled by the central processing unit (CPU).

Graphics cards over the past two decades have been required to become highly efficient at rendering



CHAPTER 1. INTRODUCTION 3

increasingly complex 3D scenes at high frame rates. This has forced their architecture to be

massively parallel in order to compute graphics faster than general purpose CPUs.

Compared to a CPU, a GPU features many more transistors on the control path due to the

lower number of control instructions required. Memory is optimized for throughput and not latency,

with strict access patterns. GPUs are not optimized for general purpose programs, and they do

not feature the complex instruction sets, or branch control of the modern CPU. Finally, although

current high-performance CPUs feature multiple cores for limited parallel processing, GPUs are

arguably a more attractive option in terms of lower price and power usage.

The advent of GPGPU programming came with programmable shader units that allowed the

programmer to write small programs at each pixel or vertex in the rendering pipeline. In order

to program the shader units, shading languages had to be used in conjunction with graphics APIs

such as DirectX and OpenGL. NVIDIA developed the high-level shading language Cg to assist

in programming shaders, however it still required knowledge of graphics APIs. More recently,

languages have been developed that allow the programmer to implement algorithms without any

knowledge of graphics APIs or architectures. One such language is NVIDIA CUDA, and is the

language chosen for the optimizations in this project.

1.3.2 CUDA

Compute Unified Device Architecture, or CUDA, is NVIDIA’s GPGPU technology that allows for

programming of the GPU without any graphics knowledge. The C language model has at its core

three key abstractions, from [16]: a hierarchy of thread groups (to allow for transparent scalability),

shared memories (allowing access to low-latency cached memory), and barrier synchronization (to

prevent race conditions). This breaks the task of parallelization into three sub problems, which

allows for language expressivity when threads cooperate, and scalability when extended to multiple

processor cores.

Framework

CUDA uses extends C by allowing a programmer to write kernels that when invoked execute

thousands of lightweight identical threads in parallel. CUDA arranges these threads into a hierarchy

of blocks and grids, as can be seen in Figure 1.1 allowing for runtime transparent scaling of code

to different GPUs. The threads are identified by their location within the grid and block, making
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CUDA perfectly suited for tasks such as image processing where each thread is easily assigned to

an individual pixel (picture element) or voxel (volume element).

When writing and optimizing complex parallel code in CUDA it is often found that threads

may need to cooperate, typically by sharing data or temporarily halting execution. The memory

hierarchy of CUDA threads is shown in Figure 1.2. Here it can be seen that each thread has access

to: a per-thread private local memory, a per-block on-chip shared memory to share data between

threads, and finally an off-chip global memory accessible to all threads within all blocks. There are

also constant and texture memory spaces accessible to all threads, however these are not featured

in our algorithm and so will not be discussed in any further detail.

Performance Guidelines

There are many techniques to optimize a parallel algorithm. Firstly, the optimum block and grid

sizes should be used to ensure maximum ‘occupancy’. Occupancy is the ratio of the number of

active warps (32 parallel threads) to the maximum number of active warps supported by the GPU

multiprocessor. To maximize efficiency, there is a trade off between making the occupancy high

enough to ensure no multiprocessor is ever idle, and making it low enough to ensure no bank conflicts

(when two threads attempting to access the same location in shared memory have their accesses

serialized).

Secondly, one of the best ways in which to optimize the parallelization is through efficient

memory usage. The global memory space is not cached and therefore has a much higher latency

and lower bandwidth than on-chip shared memory. Therefore it is the aim of the programmer to

minimize global memory accesses. From [16], it recommended that each thread in a block firstly

loads data from global memory to shared memory, synchronizes with all other threads within

the thread block to ensure shared memory locations have been written to, processes the data,

synchronizes again to ensure shared memory has been fully updated with results, and finally writes

the results back to global memory coalesced.

Coalescence is an important concept in memory management as it can speed up memory reads

and stores significantly. [16] lists the following three conditions for coalescing: “threads must access

either 32-bit words, 64-bit words, or 128-bit words”, “all 16 words must lie in the same segment of

size equal to the memory transaction size” and “threads must access the words in sequence”.
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Figure 1.1: A grid of thread blocks. This figure is taken from [16]

Figure 1.2: The memory hierarchy of CUDA threads and blocks. This figure is taken from [16]



Chapter 2

Method

In this section, we introduce the level set method and dynamic implicit surfaces. Their role in

segmentation is discussed having introduced and defined mathematical constructs such as signed

distance transforms.

2.1 Level Set Method

The level set method evolves a contour (in two dimensions) or a surface (in three dimensions)

implicitly by manipulating a higher dimensional function, called the level set function φ(x,t). The

evolving contour or surface can be extracted from the zero level set Γ(x,t) = {φ(x,t) = 0}. The

advantage of using this method is that topological changes such as merging and splitting of the

contour or surface are catered for implicitly, as can be seen below in Figure 2.1. The level set

method, since its introduction by Osher and Sethian in [19], has seen widespread application in

image processing, computer graphics (surface reconstructions) and physical simulation (particularly

fluid simulation).

The evolution of the contour or surface is governed by a level set equation. The solution tended

to by this partial differential equation is computed iteratively by updating φ at each time interval.

The general form of the level set equation is shown below.

∂φ

∂t
= −|∇φ| · F (2.1)

In the above level set equation F is the velocity term that describes the level set evolution.

By manipulating F , we can guide the level set to different areas or shapes, given a particular

6
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Figure 2.1: The relationship between the level set function (left) and contour (right) can be seen.
It can be seen evolving the surface splits the contour.

initialization of the level set function.

2.2 Segmentation using Level Sets

Typically, for applications in image segmentation F is dependent on the pixel intensity or curvature

values of the level set. The importance of having a curvature term is shown in Figure 2.2. Here

there is no force to smoothen high curvatures, resulting in the contour leaking. This is when the

level set surface evolves through a anatomical boundary into another anatomical object that was

not intended to be segmented. This also makes segmentation difficult for objects which have very

high curvature as the curvature weighting term often needs to be set very low in order to allow for

these high curvatures, yet doing so may result in such leaking.

Figure 2.2: Leaking when there is no curvature term (or α = 1)

F may also be dependent on an edge indicator function, which is defined as having a value zero
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on an edge, and non-zero otherwise. This causes F to slow the level set evolution when on an edge.

In [13] F is dependent on data and curvature functions only (with a weighting parameter

between the two) for the purposes of image segmentation. Therefore, we will adopt the same

methodology making the level set equation take the form

∂φ

∂t
= −|∇φ|

[
αD(I) + (1− α)∇ · ∇φ

|∇φ|

]
(2.2)

where the data function D(I) tends the solution towards targeted features, and the mean

curvature term ∇ · (∇φ/|∇φ|) keeps the level set function smooth. Weighting between these two

is α ∈ [0, 1], a free parameter that is set beforehand to control how smooth the contour or surface

should be.

The data function D(I) acts as the principal ‘force’ that drives the segmentation. By making

D positive in desired regions or negative in undesired regions, the model will tend towards the

segmentation sought after. A simple speed function that fulfills this purpose, used by Lefohn,

Whitaker and Cates in [13, 2], is given by

D(I) = ε− |I − T | (2.3)

which is plotted in Figure 2.3. Here T describes the central intensity value of the region to be

segmented, and ε describes the intensity deviation around T that is part of the desired segmentation.

Therefore if a pixel or voxel has an intensity value within the T ± ε range the model will expand,

and otherwise it will contract.

Figure 2.3: The speed term from [2]
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Therefore the three user parameters that need to be specified for segmentation are T ,ε and

α. An initial mask (to be transformed to a signed distance function as discussed in Section 2.2.1)

for the level set function is also required, which may take the form of a cube in three dimensions

or a square in two dimensions, or any other arbitrary closed shape. Typically, the user selects

spherical seed points specifying the center in i, j, k space and the radius to guide the level set to

the anatomical object of interest.

The level set iteration can be terminated once φ has converged, or after a certain number of

iterations.

2.2.1 Signed Distance Transforms

A distance transform assigns a value for every pixel (or voxel) within a binary image containing one

or more objects a value which represents the minimum distance from that pixel to the closest pixel

on the boundary of the object(s). The mathematical definition of a distance function D : R3 → R

for a set S, from [19], is

D(r, S) = min|r − S| for all r ∈ R3 (2.4)

A signed distance transform assigns the sign of the distance value as positive for those pixels

outside the object, and negative for those inside it. This is the sign convention that will be followed

in the implementation, however the opposite sign convention could also be used. It should be noted

that the distance values depend on the chosen metric for distance: some common distance metrics

are Euclidean distance, chessboard distance, and city block distance. Many of the algorithms

that compute signed Euclidean distance transforms (SEDT) often trade accuracy for efficiency and

feature varying levels of complexity.

Signed distance transforms are required to initialize φ and also to reinitialize it every certain

number of iterations. Computation of the initialization of φ is required before iteration of the level

set equation can take place, and this will typically be a signed distance transform of an initial mask.

Therefore the level set segmentation filter requires two images: an initial mask (which indicates

targeted regions) and a feature image (which is the image to be segmented). The choice of how

often to reinitialize is an important one: if the number of iterations between reinitialization is too

low the level set will simply oscillate, if it is too high the risky of instabilities is elevated.
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(a) Arbitrary Initial Mask (b) Signed Distance Transform of
Mask with Zero Level Set Overlaid

Figure 2.4: 2D Signed Euclidean Distance Transform

Alternatively, [8] provides a method of evolving level sets without reinitialization using signed

distance transforms by forcing the level set function to be close to a signed distance function.

2.2.2 3D Volume Segmentations

Extending a two dimensional level set segmentation algorithm to three dimensions is a relatively

straightforward task, however requires careful consideration of boundary conditions. There are

many more derivatives that are required in order to compute the level set update. In addition to

the increased number of variables, creating a signed Euclidean distance function is one of the major

challenges in developing 3D segmentation code. Unfortunately, neither C code or CUDA code was

available to perform distance transform (re)initialization in 3D and therefore MATLAB was used

to initialize and reinitialize the level set during execution. There has however been recent work on

CUDA accelerated distance transforms from [23],[5]. The storage and computational complexity of

3D volume segmentation must also be appreciated and forms much of the motivation for acceleration

with CUDA.



Chapter 3

Implementation

3.1 Level Set Algorithm

3.1.1 Upwinding

Equation (2.1), the level set equation, needs to be discretized for both sequential and parallel

computation. This is done using the up-wind differencing scheme. The following explanation of

upwinding is from [18].

A first order accurate method for time discretization of equation (2.1), is given by the forward

Euler method, from [18]:

φt+∆t − φt

∆t
+ F t · ∇φt = 0 (3.1)

where φt represents the current values of φ at time t, F t represents the velocity field at time t,

and ∇φt represents the values of the gradient of φ at time t. When computing the gradient, a great

deal of care must be taken with regards to the spatial derivatives of φ. This is best exemplified by

considering the expanded form of equation (3.1)

φt+∆t − φt

∆t
+ utφtx + vtφty + wtφtz = 0 (3.2)

where u, v, w are the x, y, z components of F . For simplicity, consider the one dimensional form

of equation (3.2) at a specific grid point xi

11
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φt+∆t − φt

∆t
+ uti(φx)ti = 0 (3.3)

where (φx)i is the spatial derivative of φ at xi. The method of characteristics indicates whether

to use a forward or backwards difference method for φ based on the sign of ui at the point xi. If

ui > 0, the values of φ are moving from left to right, and therefore backwards difference methods

(D−x in Equations 3.4) should be used. Conversely, if ui < 0, forward difference methods (D+
x in

Equations 3.4) should be used to approximate φx. It is this process of choosing which approximation

for the spatial derivative of φ to use based on the sign of ui that is known as upwinding.

Extending this to three dimensions and assuming an isotropic resolution, from [13], results in

the derivatives below required for the level set equation update.

Dx = (φi+1,j,k − φi−1,j,k)/2 D+
x = φi+1,j,k − φi,j,k D−x = φi,j,k − φi−1,j,k

Dy = (φi,j+1,k − φi,j−1,k)/2 D+
y = φi,j+1,k − φi,j,k D−y = φi,j,k − φi,j−1,k

Dz = (φi,j,k+1 − φi,j,k−1)/2 D+
z = φi,j,k+1 − φi,j,k D−z = φi,j,k − φi,j,k−1

(3.4)

∇φ is approximated using the upwind scheme.

∇φmax =



√
max(D+

x , 0)2 + max(−D−x , 0)2

√
max(D+

y , 0)2 + max(−D−y , 0)2

√
max(D+

z , 0)2 + max(−D−z , 0)2


(3.5)

∇φmin =



√
min(D+

x , 0)2 + min(−D−x , 0)2

√
min(D+

y , 0)2 + min(−D−y , 0)2

√
min(D+

z , 0)2 + min(−D−z , 0)2


(3.6)

Finally, depending on whether Fi,j,k > 0 or Fi,j,k < 0, ∇φ is
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∇φ =

 ||∇φmax||2 if Fi,j,k > 0

||∇φmin||2 if Fi,j,k < 0
(3.7)

φ(t+ ∆t) = φ(t) + ∆tF |∇φ| (3.8)

The speed term F , as discussed before, is based on the pixel intensity values and curvature

values.

This implementation is computationally very demanding (in terms of time taken and storage

required) and therefore there have been several developments to optimize the implementation.

Some of these include the narrow band method [1] and sparse field method [24]. The narrow band

method restricts the computation of level set update to a thin band of ’active’ pixel/voxels that

are on or near to the level set implicit contour/surface. This speeds up computation as there is

very little need to update the level set for pixel/voxels very far from the contour. The sparse field

method adopts a similar approach, performing computations on a domain only one cell wide.

3.1.2 Curvature

Curvature is computed based on the values of the current level set using the derivatives below.

In two dimensions only D+y
x , D−yx , D+x

y , D−xy below are required, alongside the derivatives defined

previously. In three dimensions, all the derivatives below are required. Again, we are making

isotropic assumptions.

D+y
x = (φi+1,j+1,k − φi−1,j+1,k)/2 D−yx = (φi+1,j−1,k − φi−1,j−1,k)/2

D+z
x = (φi+1,j,k+1 − φi−1,j,k+1)/2 D−zx = (φi+1,j,k−1 − φi−1,j,k−1)/2

D+x
y = (φi+1,j+1,k − φi+1,j−1,k)/2 D−xy = (φi−1,j+1,k − φi−1,j−1,k)/2

D+z
y = (φi,j+1,k+1 − φi,j−1,k+1)/2 D−zy = (φi,j+1,k−1 − φi,j−1,k−1)/2

D+x
z = (φi+1,j,k+1 − φi+1,j,k−1)/2 D−xz = (φi−1,j,k+1 − φi−1,j,k−1)/2

D+y
z = (φi,j+1,k+1 − φi,j+1,k−1)/2 D−yz = (φi,j−1,k+1 − φi,j−1,k−1)/2

(3.9)

Using the difference of normals method from [13], curvature is computed using the above

derivatives with the two normals n+ and n−.
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n+ =



D+
x√

(D+
x )2+

(
D+x

y +Dy

2

)2

+

(
D+x

z +Dz
2

)2

D+
y√

(D+
y )2+

(
D

+y
x +Dx

2

)2

+

(
D

+y
z +Dz

2

)2

D+
z√

(D+
z )2+

(
D+z

y +Dx

2

)2

+

(
D+z

y +Dy

2

)2


(3.10)

n− =



D−x√
(D−x )2+

(
D−x

y +Dy

2

)2

+

(
D−x

z +Dz
2

)2

D−y√
(D−y )2+

(
D
−y
x +Dx

2

)2

+

(
D
−y
z +Dz

2

)2

D−z√
(D−z )2+

(
D−z

y +Dx

2

)2

+

(
D−z

y +Dy

2

)2


(3.11)

The two normals are used to compute divergence, allowing for mean curvature to be computed as

shown below in equation (3.12).

H =
1
2
∇ · ∇φ
|∇φ|

=
1
2

((n+
x − n−x ) + (n+

y − n−y ) + (n+
z − n−z )) (3.12)

3.1.3 Stability

From [18], a finite difference approximation to a linear partial differential equation is convergent

if and only if it is both consistent and stable. Stability implies that small errors in the solution

are not amplified during iteration. Stability is enforced using the Courant-Friedrichs-Lewy (CFL)

condition which states the numerical wave speed must be greater than the physical wave speed, i.e.

∆x/∆t > |u|. Rearranging, we have

∆t <
∆x

max {|u|}
(3.13)

which is usually implemented, through variants of equation (3.13), by choosing a CFL number

that lies between 0 and 1 to further guarantee stability.

Another measure taken to ensure stability is the inclusion of a floating point relative accuracy

term in the denominator of any fractions to avoid singularity errors as the denominator tends to



CHAPTER 3. IMPLEMENTATION 15

zero. This is done in equations (3.10),(3.11) to ensure that n does not tend to infinity if the square

root is zero.

3.2 Sequential Implementation

For this project, two dimensional implementations of the code in MATLAB and C were written

before progressing to CUDA code. Once these had been written and tested, three dimensional

implementations were coded. The following pseudo code outlines the structure of the MATLAB,

C and CUDA implementations, with only minor differences between the different versions.

Algorithm 1: Pseudo code for Level Set Segmentation

Input: Feature Image I, Initial Mask m, Threshold T , Range ε, Iterations N , Reinitialize
Every RITS

Output: Segmentation Result

Initialize φ0 to Signed Euclidean Distance Transform (SEDT) from mask m
Calculate Data Speed Term D(I) = ε− |I − T |
forall N Iterations do

Calculate First Order Derivatives D(±)
x , D

(±)
y , D

(±)
z

Calculate Second Order Derivatives D(±y,z)
x , D

(±x,z)
y ...D

(±x,y)
z

Calculate Curvature Terms n+,n−

Calculate Gradient ∇φ
Calculate Speed Term F = αD(x̄) + (1− α)∇ · ∇φ|∇φ|
Update Level Set Function φ(t+ ∆t) = φ(t) + ∆tF |∇φ|
if Iterations % RITS == 0 then

Reinitialize φ to SEDT
end

end

3.2.1 MATLAB

The first task was to write code in MATLAB to learn about the inner workings of 2D image

segmentation. The MATLAB Image Processing Toolbox provides many functions (such as the

ability to load, re-sample and filter images, compute distance transforms and easily visualize the

level set evolution) which kept code reasonably concise.

The code is split into two files (a launcher and a kernel), in order to separate the initialization

and level set update code. The launcher handles the image loading and re-sampling, with the

functions imread and imresize. The user specifies parameters for threshold values T , range ε and
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curvature weighting α, runs the launcher and then proceeds to draw a closed polygon that will

form the initial mask (providing some basic interactivity).

Figure 3.1: MATLAB user interface showing four sub figures with the input image, the initial
mask, the current zero level set interface superimposed on the input image and the current level
set surface in 3D

The level set function φ is then initialized to a signed distance function of this mask, and

iteration of the level set equation begins for a fixed number of iterations (also user-definable).

Reinitialization of the level set is performed once every 50 iterations, and the current level set

contour and surface are displayed every 20 iterations.

The derivatives are calculated by subtracting shifted matrices of the level set function. Note

that derivatives are not calculated in an element by element fashion, as this would be less efficient.

The MATLAB code also features the Courant-Friedreichs-Lewy (CFL) condition which was

described in section 3.1.3 to enforce stability, instead of arbitrarily defining ∆t.

Finally, the user has the option of downsampling the input image in order to speed up the

computation.

The MATLAB code was later adapted to 3D volume segmentation. 2D MATLAB code can be

found in Appendix A.
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3.2.2 C

Initially C code was written to most closely mirror the MATLAB code. The C code would serve as

check for the parallel implementations to ensure correct values were calculated and, more impor-

tantly, as a benchmark to measure speed ups against.

Whereas the MATLAB code uses shifts of the matrix φ to calculate derivatives, in C the level

set function φ is stepped through in an element by element fashion. The code is structured such

that for a given i, j, k all derivatives are calculated; this is opposed to structuring the code such that

for a given derivative all i, j, k for that derivative are calculated. The latter method could not form

the structure for a CUDA algorithm, and in fact this did briefly form the initial C implementation

which was later restructured. Many boundary conditions had to be placed in order to ensure that

derivatives took the value zero at certain boundaries. For example the forward difference derivative

D+
x = φi+1,j − φi,j must equal zero when i = imageW as there is no φi+1,j term. The complexity

of this task increases in three dimensions as there are six boundaries instead of four boundaries to

condition for.

In the C implementation, the feature image and current level set function are stored in memory

as one dimensional arrays. Therefore they are stepped through by nested for loops, which depending

on the dimensionality of the problem would either loop i, j or i, j, k. To go from the two dimensional

i, j indices to a one dimensional index ind when stepping through the array, the equation ind =

i + (j × imageW) is used and in three dimensions the equation ind = i + (j × imageW) + (k ×

imageW× imageH) is used.

This implementation uses some external code for computing signed distance transforms and

loading 2D bitmap images. In 3D raw (header-less) files were used. The sedt2d (Signed Euclidean

Distance Transform in 2D) function written by Timothy Terriberry was used for the distance

transforms and bmploader.cpp from the NVIDIA CUDA SDK library was used for image loading.

Finally, in order to visualize the level set evolution the combination of OpenGL and GLUT

(OpenGL Utility Toolkit) was used to render the current zero level set. Rendering code was kept

as compact and efficient as possible in order to have as minimal an effect as possible on performance

whilst also making the program more comparable with the MATLAB code. Its principal purpose

was of course to visualize how the level set was evolving (checking for instabilities, incorrect param-

eters for thresholding, range and curvature) and also view the final segmentation. When testing
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and timing this algorithm, these visualizations were of course not used. A small amount of time

was spent designing a GUI interface with QT however this never become fully integrated due to

time constraints.

3.3 Parallel Implementation

3.3.1 Unoptimized Version

The first parallel implementation followed the structure shown in the pseudo code below. In CUDA,

it is assumed that both the host and device maintain their own DRAM [16]. Host memory is al-

located as before using malloc and device memory is allocated using cudaMalloc. As memory

bandwidth between the host memory and device memory is low (it is much lower than the band-

width between the device and the device memory), it is recommended to keep the number of

transfers to a minimum. In order to minimize the latency of accessing the shared memory it is

recommended to make the block size a multiple of 16 and use the cudaMallocPitch routine to

allocate memory with padding if the images’s x dimension is not a multiple of 16. Therefore most

CUDA programs follow a standard structure of initialization, host to device data transfer, compute,

and finally memory transfer of compute results from device to host.

Unfortunately the algorithm for computing signed distance transforms in 2D is not executed in

CUDA and creating one from scratch would have been beyond the scope of this project. Therefore

device to host memory transfers were required every time reinitialization was necessary. Of course,

when timing it is possible to stop and start timers during this process. As stated previously, for

3D signed Euclidean distance transforms neither a sequential or CUDA version was available.

CUDA threads are assigned a unique thread ID that identifies its location within the thread

block and grid. This provides a natural way to invoke computation across the image and level

set domain, by using the thread IDs for addressing. This is best explained with the tables below.

Assume our image has dimensions 4 × 4 and the block size is 2 × 2. Invoking the kernel with

a grid size of 2 blocks × 2 blocks results in the 16 threads shown in table 3.3.1, in the form

(threadIdx.y,threadIdx.x). These threads are grouped into blocks of four, as shown in table

3.3.1, in the form (blockIdx.y,blockIdx.x).

As each thread has access to its own threadIdx and blockIdx, global indices (i, j) can be

determined using the equations
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Algorithm 2: Parallel Implementation Pseudo code

Initialize φ0
i,j,k, D on host memory

Allocate memory for φn, φn+1, D on device
Copy φ0, D from host to device
forall N Iterations do

Execute Level Set Update CUDA Kernel φn+1
i,j,k = φni,j,k + ∆tF |∇φni,j,k|

Swap pointers of φni,j,k, φ
n+1
i,j,k

if Iterations % RITS == 0 then
Copy φ from device to host
Reinitialize φ to Signed Euclidean Distance Transform
Copy φ from host to device

end
end
Copy φ from device to host

(0,0) (0,1) (0,1) (0,1)
(1,0) (1,1) (1,0) (1,1)
(0,0) (0,1) (0,0) (0,1)
(1,0) (1,1) (1,0) (1,1)

Table 3.1: Thread IDs of 16 threads grouped into 4 blocks

int i = blockIdx.x * blockDim.x + threadIdx.x;

int j = blockIdx.y * blockDim.y + threadIdx.y;

where blockDim.x and blockDim.y represent the dimensions of the block (which in this case

are both equal to 2). Of course, much larger block sizes are used, keeping the block x dimension

(BX) a multiple of 16 for maximum speed. The effect of different block sizes on performance is

analysed in Section 4.1.2.

Once these indices were set up, it was relatively straightforward to transfer the level set update

code to a CUDA kernel. Although this code exhibited speedups over the single threaded imple-

mentation, there was still significant optimization to perform as a great deal of computation time

was being wasted on access global memory continuously. Therefore this is a naive implementation.

Some features such as the CFL condition, could not be implemented in this parallel version

(0,0) (0,1)
(1,0) (1,1)

Table 3.2: Block IDs of 4 blocks grouped into a grid
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without slowing down computation time significantly. This is because such a condition requires the

determination of the largest element of ∇φ which is computed roughly half way through the update

procedure. Therefore integrating this condition would require transferring ∇φ and curvature terms

back to host memory to determine max {F |∇φ|}, or perhaps more efficiently calling a CUDA kernel

to determine the largest element. The cost of this added complexity and slowdown outweighed the

benefits, and therefore ∆t was chosen to be a fixed parameter.

3.3.2 2D Shared Memory Optimization

In order to keep the number of costly accesses to device memory at a minimum, effective use of the

on-chip shared memory is essential. This along with maximizing parallel execution and optimization

of instruction usage form the three main performance optimization strategies for CUDA [16].

Integrating use of the shared memory into the CUDA kernel requires partitioning the level set

domain into tiles. For first order finite difference problems such as ours each tile must also contain

values for neighborhood nodes (often known as halo nodes) for the i± 1 and j ± 1 elements, which

would be stored in separate tiles, so these must also be read into shared memory. As the size of the

shared memory is only 16 KB, the sizes of the tiles and corresponding halo are limited. [14] outlines

a framework for such a process that may serve as a good model for a multi GPU implementation,

however the kernel will need to be modified as it is optimized for higher order stencils (without cross-

derivative terms). Instead, tiling code was adapted from Giles’ (2008) ’Jacobi iteration for Laplace

discretization’ algorithm [6] which supports cross-derivatives well. The shared memory management

technique in this finite difference algorithm accelerated the global memory implementation by over

an order of magnitude.

The two dimensional segmentation algorithm does not require any k ± 1 terms, making the

shared memory management more straightforward. For a block (and tile) size of BX × BY there

are 2 × (BX + BY + 2) halo elements, as can be seen in Figure 3.2. In this figure the darker

elements represent the thread block (the active tile) and the lighter elements represent the halo. It

is in this manner that the domain of the computation is partitioned and this results in overlapping

of the halo nodes.

Each thread loads φn values from global memory to the active tile stored in shared memory.

However, depending on the location of the thread within the thread block it may also load a single

halo node into the shared memory. Therefore in order to load all halo nodes, this technique assumes
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Figure 3.2: 2D Shared Memory Arrangement

that there are at least as many interior nodes as there are halo nodes. Before data can be loaded

into the halos, the thread ID needs to be mapped to the location of a halo node both within the

halo and within the global indices. The segment of code that sets up the halo indices (both local

and global) for loading into shared memory is shown below, code is from [6].

k = threadIdx.x + threadIdx.y*BLOCK_X;

halo = k < 2*(BLOCK_X+BLOCK_Y+2);

if (halo) {

if (threadIdx.y<2) { // y-halos (coalesced)

i = threadIdx.x;

j = threadIdx.y*(BLOCK_Y+1) - 1;

}

else { // x-halos (not coalesced)

i = (k%2)*(BLOCK_X+1) - 1;

j = k/2 - BLOCK_X - 1;

}

The first 2× (BX +BY + 2) threads are assigned to load values into the halo in this manner.

This is best visualised with the example of a 6× 6 thread block as shown below in Figure 3.3.
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Figure 3.3: Tile and halo showing for a 6× 6 block the mapping of thread IDs to halo nodes
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This method of loading elements has been chosen in order to maximize coalescence. Not only

are the interior tile nodes loaded coalesced, but as can be seen above, the first 12 elements of

the thread block load the y halos (above and below the the interior tile excluding corners) in a

coalesced manner. The side halos (x halos) loads are non-coalesced. When writing back results to

global memory, as only the interior nodes have updated values they are written to global memory

coalesced.

3.3.3 3D Shared Memory Optimization

In three dimensions, k ± 1 terms are required and therefore these values need to also be stored

in shared memory. CUDA only allows for two dimensional grid sizes (even though blocks can be

three dimensional), implying that the number of blocks in the z dimension cannot exceed 1. The

algorithm by Giles [6] uses three k-planes of data for this purpose as shown in Figure 3.4.

Figure 3.4: 3D Shared Memory Arrangement

Before looping over the k-planes begins, the φk plane is loaded into the k + 1 plane of shared

memory. Upon entering the loop this plane is shifted down one plane to the k plane and the φnk+1

plane is loaded into the k + 1 plane. Level set function values for φn+1
k are calculated and written

coalesced back to global memory. The k plane is then shifted to the k − 1 plane, the k + 1 plane

is shifted to the k plane, and new values are loaded from φnk+1 to the k + 1 plane. This looping

over the z dimension continues for all z < imageD. In this manner, each block actually processes

a BX ×BY × imageD sub domain.
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Results

In the following, the results of the speed ups attained by optimizing using CUDA will be shown.

However, before this can be done, some preliminaries need to be listed. Firstly, all hardware testing

was done on a single PC with an Intel Core 2 Duo T8100 Processor with a clock speed of 2.1 GHz

and 4 GB of RAM. The graphics hardware used was the NVIDIA GeForce 8600M GT, with CUDA

2.1 software installed. It should be noted that at the time of writing, CUDA 2.2 was available

although in beta form and was not chosen due to potential instabilities. Timing code used was

from the cutil library provided in the CUDA toolkit.

Although 8600M GT is adequate for CUDA development, it has rather limited performance

in comparison to other graphics chips. This implies that the performance speed ups below could

potentially be up to a further order of magnitude faster on latest hardware. For example, although

the shader processing rate of 8600M GT is quoted as 91.2 Gigaflops the recently released GeForce

GTX 295 boasts an impressive 1788.48 Gigaflops potentially allowing for another order of magni-

tude speed up from the 8600M GT hardware. This is mainly due to the increased number of on

chip multiprocessors, however to lesser extent is also due to the device being of higher compute

capability : there are fewer limitations (such as support for double precision arithmetic) and relaxed

requirements for coalescing memory transfers. Due to the transparent runtime scalability of CUDA

kernels, very few adjustments would need to be made to tailor code for new hardware. Nonethe-

less, the most obvious adjustment would be to increase the size of the thread blocks for increased

occupancy.

23



CHAPTER 4. RESULTS 24

4.1 Speed Tests and Analysis

4.1.1 2D Segmentations

In Figure 4.1 the example of a liver segmentation is shown. The liver data is of good contrast and

dimension 256×256 (which is a multiple of 16 implying no memory padding is required in CUDA).

The liver has been entirely segmented, with the initial mask as the input. The time taken for 5000

iterations in MATLAB, C, CUDA (Unoptimized) and CUDA (Optimized) are shown in Table 4.1.

(a) Feature Image Input - Liver (b) Initial Mask Input (c) Output of Segmentation

Figure 4.1: 2D Liver Segmentation with parameters T = 180, ε = 45, α = 0.003

Algorithm Version Time (s)
MATLAB 425.95
C 55.44
CUDA (Unoptimized) 8.38
CUDA (Optimized) 1.73

Table 4.1: Comparison of runtime for different algorithm versions - 2D liver segmentation

The runtime speed up attained from sequential code in C to CUDA optimized code is approxi-

mately 32×. The block size used for 2D CUDA compute was 32× 8.

In Figure 4.2 we can see the brain in sagittal view. This image is of relatively poor contrast and

has dimensions 512× 512. This makes the image both a computationally demanding segmentation

(as it has relatively large dimensions) and challenging in terms of accuracy. The segmentation inputs

and output can be seen in Figure 4.2. It can be seen that the sequential algorithm has performed

reasonably in segmenting the white and gray matter and some of the brain stem. Considerable

weighting had to be given to curvature in order to prevent leaks due to the poor contrast, resulting

in a very rounded segmentation.

The performance speedup attained on this larger image is therefore 46×, which is greater than
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(a) Feature Image Input - brain (b) Initial Mask Input (c) Output of Segmentation

Figure 4.2: 2D Brain Segmentation with parameters T = 45, ε = 30, α = 0.003

Algorithm Version Time (s)
MATLAB 2737.84
C 322.81
CUDA (Unoptimized) 44.68
CUDA (Optimized) 6.99

Table 4.2: Comparison of runtime for different algorithm versions - 2D brain segmentation

the speed up attained for the smaller 256 × 256 image. This motivates exploration into the effect

of different image sizes on CUDA speed up, which is discussed in Section 4.1.1.

Effect of Noise

Denoising filters already exist as part of the CUDA SDK (i.e. imageDenoising). Our algorithm

does not feature any image pre-processing algorithms such as denoising or blurring so its perfor-

mance on noisy images is expected to be poor. In order to test this, artificial Gaussian noise of

20% and 40% was added to the liver image as shown in Figure 4.3.

It can be seen that through manipulating the parameter ε segmentations are still approximately

valid. The effect of noise on performance of the algorithm was negligible.

Effect of Different Image Sizes

It is found, as expected, that for all versions of the algorithm (CUDA and single threaded) compute

time scales linearly with the number of elements. For square 2D images, this implies that increasing

image size by a factor of two in each dimension increases compute time by a factor of four. Figure

4.4(a) displays compute times to 5000 iterations across the different algorithm versions. Both the

same input image and mask were used for all tests, again with a block dimension of 32× 8.
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(a) Liver with 20% Noise (b) Segmentation with
T = 180, ε = 55, α =
0.003

(c) Liver with 40% Noise (d) Segmentation with
T = 180, ε = 75, α =
0.003

Figure 4.3: Segmentation of the liver with artificially added noise

It can be seen that the difference in compute time between the parallel and sequential versions

is greatest for the largest images. This is due to the number of elements computed per second

being much greater for the parallel algorithms than for the sequential algorithms, across all image

sizes. Interestingly, Figure 4.4(b) shows that the number of elements computed per second is

approximately constant for both the sequential and unoptimized CUDA implementations, but not

for the optimized shared memory CUDA algorithm. This is due to very low occupancy of the GPU

at these small image sizes, resulting in reduced masking of the high latency between device memory

and shared memory.

4.1.2 3D Segmentations

Figure 4.5 illustrates a level set surface evolving in 3 dimensions. In order to visualize the level set

evolving every certain number of iterations the CUDA SDK example volumeRender was modified.

This version of the code with visualization of the level set evolution is approximately a factor of

2 slower. This volume rendering engine uses ray tracing which is not advised for segmentation

validation, and therefore Paraview 3.4.0 (www.paraview.org) was used.
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Figure 4.5: Level Set Surface Evolution in 3D at 0, 50, 150 and 200 Iterations

The 3D segmentation CUDA code uses a block size of 32× 4. A block size of 32× 8 causes the

kernel invocation to fail due to the registers used per threads multiplied by the thread block size

being greater N (where for G80 NVIDIA hardware N = 8192 32-bit registers per multiprocessor.

This limits the extent to which occupancy can be increased to mask latencies due to global memory

loads. Section 4.1.2 explores the effect of varying block sizes on performance.

The results from segmenting the cerebral hemispheres, cerebellum and brain stem can be seen

in Figure 4.6. The high quality of this segmentation is due in part to the excellent BrainWeb MRI

data used (data is available from [4]). This data is of size 181×217×181 and is therefore a good test

of the algorithm for reasonably large volumes. As the CFL condition had not been implemented

in the 3D level set solver, it was found to converge at 1000 iterations and that DT values greater

than 0.1 resulted in instability.

The times taken to segment are shown in Table 4.3. MATLAB performance is not shown as

out of memory errors were encountered when loading such large arrays (and even if these had not

been encountered, the segmentation would have taken an infeasible amount of time).

Algorithm Version Time (s)
MATLAB N/A
C 4697.5
CUDA (Unoptimized) 392.8
CUDA (Optimized) 141.2

Table 4.3: Comparison of runtime for different algorithm versions - 3D Brain segmentation of
BrainWeb data [4]

An impressive speed up of 33× is observed. To further demonstrate the power of this algorithm

testing was briefly done on a more mid-range 8800 GTX card, observing a speed up of 117×

compared to the sequential algorithm.

In Figure 4.7 segmentation of both the right and left ventricles can be seen. This segmentation
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Figure 4.6: Segmentation of a brain MRI dataset with parameters T = 150, ε = 50, α = 0.03 MRI
data from [4]

(a) (b)

Figure 4.7: Segmentation of the right and left ventricles from a heart MRI dataset with parameters
T = 180, ε = 60, α = 0.02 (a) Input data slice (b) Segmented heart clipped through z plane
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data only had 17 z plane slices (total resolution 256× 160× 17).

Effect of Different Volume Sizes

Figure 4.8 shows the effect of multiple volume sizes on the compute time to 1000 iterations on

the optimized CUDA algorithm. Tests were not run on unoptimized CUDA code as this is not of

particular interest.

It can be seen from this figure that the speed up at low volume sizes is much smaller than

the speed up at larger volume sizes. The sequential algorithm performs almost half as slowly as

itself for volume sizes larger than 643. This is most likely due to the fast on board CPU cache

being used only for volume sizes smaller than this, for volume sizes larger it cannot fit on the

CPU cache and so is stored on the slower DRAM. Conversely, the CUDA code performs relatively

poorly for small volume sizes and much more quickly for larger ones. This is essentially due to
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low numbers of processors being used for such small images and many more being used for larger

images. Therefore the speedup line essentially shows that the algorithm follows Amdahl’s and

Gustafson’s laws of parallel computation.

Volume sizes much larger than 2563 could not be tested as the maximum amount of global

memory available for the 8600M GT is 256 MB. For example, a 3203 volume would take up

3203 × sizeof(float) and there are three of these arrays (for the feature image, previous level

set iteration and current level set iteration) which would take up 375 MB of graphics memory. It

is however expected, for these even larger volumes, that the speedup of the algorithm will remain

approximately plateaued.

Effect of Different CUDA Block/Grid Sizes

Finding the optimum block size for CUDA code is one of the most important ways to optimize

performance. Block sizes should not be a user parameter (other than for testing purposes most

notably across different GPUs) as it assumed the developer would have chosen the optimum block

size for maximum performance for a particular GPU. Figure 4.4 shows the compute times to 1000

iterations for the CUDA optimized code with different block sizes, all other parameters were held

constant.

BX ×BY Threads/Block Time (s)
32× 4 128 141.7
16× 8 128 141.9
16× 12 192 108.4
32× 6 192 107.4
48× 4 192 106.8

Table 4.4: Comparison of runtime for different block sizes

It can be seen that for blocks with 192 threads performance is approximately constant across

the different block arrangements. This is due to the fact that BX has been chosen to be a multiple

of 16 to maximize performance, the parameter BY has much less of an effect on performance and

should always be set secondary to BX.

The CUDA Occupancy Calculator allows the computation of the multiprocessor occupancy that

a particular CUDA kernel has on a particular GPU. The resource usage of the 3D shared memory

kernel is shown below in Table 4.5. Some of these values were attained by compiling with the

-cubin option to nvcc (NVIDIA CUDA compiler).
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Resource Usage
Threads Per Block 192
Registers Per Thread 39
Shared Memory Per Block (bytes) 5760

Table 4.5: 3D shared memory kernel resource usage - CUDA Occupancy Calculator inputs
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Figure 4.9: The effect of varying the number of threads per block on multiprocessor occupancy

The results from the CUDA Occupancy Calculator are shown below in Figure 4.9. The kernel

uses a large number of registers due to its complexity, and this is what is limiting the maximum

number of threads per block to 192. Having said that, adjusting the kernel to use fewer registers,

and thus attain higher occupancy, may not necessarily yield higher performance due to the potential

introduction of other effects such as additional instructions, spills to device memory and divergent

branches.
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4.2 Discussion and Limitations

4.2.1 Speed

This algorithm does not currently use a narrow band, introduced in Section 3.1.1, to update the

level set in either the sequential or parallel versions. If it were introduced into the CUDA kernel, the

complexity of the kernel would increase further, increasing the number of registers used. Therefore

the performance gains on the parallel algorithm would not be as great in comparison to the gains

on the sequential algorithm.

Comparison of CPU and GPU code was done with algorithms that most closely mirrored each

other. Although this standardizes the code, it does distort the results slightly as there is potential

for optimization on the CPU by making effective use of the CPU cache, and multiple cores (if

present).

Goodman [7] shows that CPU code may be slowed if a GPU kernel is executed and therefore

suggests that CPU and GPU code run in separate independent environments. To this effect, this

has been catered for, increasing the accuracy of the speed up figures attained.

Furthermore, making comparisons with MATLAB code is inadvisable given the environment

that MATLAB code runs. MATLAB code is JIT compiled, creating many problems when directly

comparing compute times between the two versions. Speed ups were for this reason not measured

against MATLAB code. In fact, the main purpose of the MATLAB code was to learn about the

inner workings of level set segmentation.

4.2.2 Accuracy

Firstly, the nature of segmenting images using thresholding and curvature terms favours segmen-

tations of anatomical objects with a relatively homogeneous gray value range. Therefore, this

algorithm performs best when delineating more homogeneous anatomical structures as can be seen

with the detailed brain segmentation shown in Figure 4.6.

Secondly, as discussed in Section 2.2.2 the current 3D level set segmentation solver does not

integrate a reinitialization algorithm. This is the largest limitation of this algorithm as it may

result in instabilities in the level set function if ∇φ values get too large. That said, almost no

instabilities were found during testing. It should be noted that when implementing a 3D distance

transform there is a major trade off between accuracy and speed.
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Conclusions and Future Work

5.1 Conclusion

In this project report a fast segmentation algorithm has been presented and analyzed. The im-

plementation on the graphics device is very fast, with large two dimensional images and three

dimensional volumes segmented 30 to 40 times faster (on a relatively low performance GPU) than

sequential algorithms. The method of using level sets to segment images, and how to accelerate

this process using GPUs has been discussed in great detail. The numerical methods used for the

implementation were listed in Section 3.1. Giles’ CUDA kernel for Laplace discretization in 3D

[6] has been adapted for level set iteration. In Section 4.1 it was seen that the power of GPU

acceleration was demonstrated for very large data sets.

Given the wide range of applications level sets have in computing (image processing, computer

graphics and physical simulation) this algorithm serves as an excellent framework to solve a diverse

array of problems.

CUDA itself has been shown to be an excellent framework to accelerate computational problems

in engineering, and is gaining more features and fewer limitations every few months. The principal

disadvantages of CUDA are that it is only effective for very data parallel problems, and that it is

not an industry standard. Recently, to counter the latter, it is very likely that it will in fact be

replaced by OpenCL (Open Computing Language). The syntax and architecture between CUDA

and OpenCL will be very similar, allowing this code to be easily ported to OpenCL.

Nonetheless the impressive speedups attained using such low end hardware demonstrate the

power of this parallel segmentation algorithm, and this makes segmentation with large 3D volumes
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much more practical in a clinical setting.

5.2 Future Work

There are several areas in which this algorithm could be extended. These revolve around three

central themes of speed, accuracy and usability.

In terms of speed, integrating the narrow band method into the algorithm will provide some

further speed up, this however increases the complexity of the kernel potentially resulting in higher

register usage and less occupancy. This, in combination to adding support for multiple GPUs and

testing on very high performance hardware would be of significant interest.

In terms of accuracy, it would be interesting, and reasonably straightforward, to integrate some

of the already coded CUDA image processing examples (such as denoising, blurring, sharpening

examples) to form a modular CUDA image processing and segmentation library that clinicians

could work with. This could be included with a modular graphical user interface to make a very

robust, usable and fast image processing library.
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Appendix A

MATLAB 2D Code

Note: Full versions of all source code, and their revisions, can be found at
cudaseg.googlecode.com

function seg = s imple seg ( I , in i t mask , max its ,E,T, alpha )

%−− Create a s i gned d i s t ance map (SDF) from mask

phi=bwdist ( in i t mask )−bwdist (1− i n i t mask )− .5 ;

%main loop

for i t s = 1 : max its

D = E − abs ( I − T) ;

K = get cu rva tu r e ( phi ) ;

F = −alpha ∗D + (1−alpha )∗K;

dxplus=sh i f tR ( phi)−phi ;

dyplus=sh i f tU ( phi)−phi ;

dxminus=phi−s h i f t L ( phi ) ;

dyminus=phi−sh i f tD ( phi ) ;

gradphimax x = sqrt (max( dxplus ,0) .ˆ2+max(−dxminus , 0 ) . ˆ 2 ) ;

gradphimin x = sqrt (min( dxplus ,0) .ˆ2+min(−dxminus , 0 ) . ˆ 2 ) ;

gradphimax y = sqrt (max( dyplus ,0) .ˆ2+max(−dyminus , 0 ) . ˆ 2 ) ;

gradphimin y = sqrt (min( dyplus ,0) .ˆ2+min(−dyminus , 0 ) . ˆ 2 ) ;

gradphimax = sqrt ( ( gradphimax x .ˆ2)+( gradphimax y . ˆ 2 ) ) ;

gradphimin = sqrt ( ( gradphimin x .ˆ2)+( gradphimin y . ˆ 2 ) ) ;

gradphi=(F>0) .∗( gradphimax ) + (F<0) .∗( gradphimin ) ;

%s t a b i l i t y CFL

dt = .5/max(max(abs (F.∗ gradphi ) ) ) ;

%evo l v e the curve

phi = phi + dt . ∗ (F) . ∗ gradphi ;

%r e i n i t i a l i s e d i s t ance func i t on every 50 i t e r a t i o n s

i f (mod( i t s , 5 0 ) == 0)
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phi=bwdist ( phi<0)−bwdist ( phi >0);

end

%inte rmed ia t e output

i f (mod( i t s , 2 0 ) == 0)

showcontour ( I , phi , i t s ) ;

subplot ( 2 , 2 , 4 ) ; surf ( phi ) ; shading f l a t ;

end

end

%make mask from SDF

seg = phi<=0; %−− Get mask from l e v e l s e t

%−− whole matrix d e r i v a t i v e s

function s h i f t = sh i f tD (M)

s h i f t = sh i f tR (M’ ) ’ ;

function s h i f t = sh i f t L (M)

s h i f t = [ M( : , 2 : s ize (M, 2 ) ) M( : , s ize (M, 2 ) ) ] ;

function s h i f t = sh i f tR (M)

s h i f t = [ M( : , 1 ) M( : , 1 : s ize (M,2)−1) ] ;

function s h i f t = sh i f tU (M)

s h i f t = sh i f t L (M’ ) ’ ;

function curvature=ge t cu rva tu r e ( phi )

dx=( sh i f tR ( phi)− s h i f t L ( phi ) ) / 2 ;

dy=( sh i f tU ( phi)− sh i f tD ( phi ) ) / 2 ;

dxplus=sh i f tR ( phi)−phi ;

dyplus=sh i f tU ( phi)−phi ;

dxminus=phi−s h i f t L ( phi ) ;

dyminus=phi−sh i f tD ( phi ) ;

dxplusy =( sh i f tU ( sh i f tR ( phi ))− sh i f tU ( s h i f t L ( phi ) ) ) / 2 ;

dyplusx =( sh i f tR ( sh i f tU ( phi ))− sh i f tR ( sh i f tD ( phi ) ) ) / 2 ;

dxminusy=( sh i f tD ( sh i f tR ( phi ))− sh i f tD ( s h i f t L ( phi ) ) ) / 2 ;

dyminusx=( sh i f t L ( sh i f tU ( phi ))− s h i f t L ( sh i f tD ( phi ) ) ) / 2 ;

nplusx = dxplus . / sqrt (eps+(dxplus . ˆ2 )+(( dyplusx+dy ) / 2 ) . ˆ 2 ) ;

nplusy = dyplus . / sqrt (eps+(dyplus . ˆ2 )+(( dxplusy+dx ) / 2 ) . ˆ 2 ) ;

nminusx= dxminus . / sqrt (eps+(dxminus .ˆ2)+(( dyminusx+dy ) / 2 ) . ˆ 2 ) ;

nminusy= dyminus . / sqrt (eps+(dyminus .ˆ2)+(( dxminusy+dx ) / 2 ) . ˆ 2 ) ;

curvature =(( nplusx−nminusx)+(nplusy−nminusy ) / 2 ) ;

%−− Disp lays the image wi th curve superimposed

function showcontour ( I , phi , i )

subplot ( 2 , 2 , 3 ) ; t i t l e ( ’ Evolut ion ’ ) ;

imshow ( I , ’ i n i t i a l m a g n i f i c a t i o n ’ ,200 , ’ d i sp l ay range ’ , [ 0 2 5 5 ] ) ;

hold on ;

contour ( phi , [ 0 0 ] , ’ g ’ , ’ LineWidth ’ , 2 ) ;

hold o f f ; t i t l e ( [num2str( i ) ’ I t e r a t i o n s ’ ] ) ; drawnow ;
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CUDA 3D Kernel Source Code

#define ALPHA 0.03 //Weighting term between data and curva ture

#define DT 0.1 //Time s t ep

#define max(x , y ) ( ( x>y ) ? x : y )

#define min(x , y ) ( ( x<y ) ? x : y )

#define INDEX( i , j , j o f f ) ( i + mul24 ( j , j o f f ) )

#define BLOCKDIM X 32

#define BLOCKDIM Y 4

#define BLOCKDIM Z 1

g l o b a l void updatephi ( f loat ∗d phi , f loat ∗d phi1 , f loat ∗d D ,

int imageW , int imageH , int imageD , int p i t ch )

{

f loat dx , dy , dz ;

f loat dxplus , dyplus , dzplus , dxminus , dyminus , dzminus ;

f loat dxplusy , dxminusy , dxplusz , dxminusz , dyplusx , dyminusx ,

dyplusz , dyminusz , dzplusx , dzminusx , dzplusy , dzminusy ;

f loat gradphimax , gradphimin ;

f loat nplusx , nplusy , nplusz , nminusx , nminusy , nminusz , curvature ;

f loat F, gradphi ;

//M. GILES CUDA TILING CODE

int indg , indg h , indg0 ;

int i , j , k , ind , ind h , halo , a c t i v e ;

int IOFF = 1 ;

int JOFF = (BLOCKDIM X+2);

int KOFF = (BLOCKDIM X+2)∗(BLOCKDIM Y+2);

s h a r e d f loat s data [ 3∗ (BLOCKDIM X+2)∗(BLOCKDIM Y+2) ] ; // A l l o ca t e Shared Memory

k = threadIdx . y∗BLOCKDIM X + threadIdx . x ;

40
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halo = k < 2∗(BLOCKDIM X+BLOCKDIM Y+2);

i f ( halo ) {
i f ( threadIdx . y<2) { // y−ha l o s ( coa l e s c ed )

i = threadIdx . x ;

j = threadIdx . y∗(BLOCKDIM Y+1) − 1 ;

}
else { // x−ha l o s ( not coa l e s c ed )

i = (k%2)∗(BLOCKDIM X+1) − 1 ;

j = k/2 − BLOCKDIM X − 1 ;

}

ind h = INDEX( i +1, j +1,BLOCKDIM X+2)+KOFF;

i = INDEX( i , b lockIdx . x ,BLOCKDIM X) ; // g l o b a l i n d i c e s

j = INDEX( j , b lockIdx . y ,BLOCKDIM Y) ;

indg h = INDEX( i , j , p i t ch ) ;

ha lo = ( i>=0) && ( i<imageW) && ( j>=0) && ( j<imageH ) ;

}

//

// then s e t up i nd i c e s f o r main b l o c k

//

i = threadIdx . x ;

j = threadIdx . y ;

ind = INDEX( i +1, j +1,BLOCKDIM X+2) ;

i = INDEX( i , b lockIdx . x ,BLOCKDIM X) ; // g l o b a l i n d i c e s

j = INDEX( j , b lockIdx . y ,BLOCKDIM Y) ;

indg = INDEX( i , j , p i t ch ) ;

a c t i v e = ( i<imageW) && ( j<imageH ) ;

//

// read i n i t i a l p lane o f u1 array

//

i f ( a c t i v e ) s data [ ind+KOFF+KOFF] = d phi1 [ indg ] ;

i f ( halo ) s data [ ind h+KOFF+KOFF] = d phi1 [ indg h ] ;

for ( int k=0;k<imageD ; k++){ //Loop over z dimension

i f ( a c t i v e ) {
indg0 = indg ;

indg = INDEX( indg , imageH , p i t ch ) ;

s data [ ind−KOFF] = s data [ ind ] ;

s data [ ind ] = s data [ ind+KOFF] ;

i f (k<imageD−1)

s data [ ind+KOFF] = d phi1 [ indg ] ;
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}

i f ( halo ) {
indg h = INDEX( indg h , imageH , p i t ch ) ;

s data [ ind h−KOFF] = s data [ ind h ] ;

s data [ ind h ] = s data [ ind h+KOFF] ;

i f (k<imageD−1)

s data [ ind h+KOFF] = d phi1 [ indg h ] ;

}
//M. GILES CUDA TILING CODE END

i f ( a c t i v e ) {

i f ( i ==0|| i==imageW−1){dx=0;} // Ca l cu l a t e F i r s t Order De r i v a t i v e s

else {dx=( s data [ ind+IOFF]− s data [ ind−IOFF ] ) / 2 ; }
i f ( j ==0|| j==imageH−1){dy=0;}
else {dy=( s data [ ind−JOFF]− s data [ ind+JOFF] ) / 2 ; }
i f ( k==0||k==imageD−1){dz=0;}
else {dz=( s data [ ind+KOFF]− s data [ ind−KOFF] ) / 2 ; }

i f ( i==imageW−1){dxplus =0;}
else {dxplus =( s data [ ind+IOFF]− s data [ ind ] ) ; }
i f ( j==0){dyplus =0;}
else {dyplus =( s data [ ind−JOFF]− s data [ ind ] ) ; }
i f ( k==imageD−1){dzplus =0;}
else { dzplus =( s data [ ind+KOFF]− s data [ ind ] ) ; }
i f ( i ==0){dxminus=0;}
else {dxminus=( s data [ ind ]− s data [ ind−IOFF ] ) ; }
i f ( j==imageH−1){dyminus=0;}
else {dyminus=( s data [ ind ]− s data [ ind+JOFF ] ) ; }
i f ( k==0){dzminus=0;}
else {dzminus=( s data [ ind ]− s data [ ind−KOFF] ) ; }

i f ( i ==0|| i==imageW−1 | | j==0){dxplusy =0;} // Ca l cu l a t e Cross De r i v a t i v e s

else {dxplusy =( s data [ ind−JOFF+IOFF]− s data [ ind−JOFF−IOFF ] ) / 2 ; }
i f ( i ==0|| i==imageW−1 | | j==imageH−1){dxminusy=0;}
else {dxminusy=( s data [ ind+JOFF+IOFF]− s data [ ind+JOFF−IOFF ] ) / 2 ; }
i f ( i ==0|| i==imageW−1 | |k==imageD−1) {dxplusz =0;}
else {dxplusz =( s data [ ind+KOFF+IOFF]− s data [ ind+KOFF−IOFF ] ) / 2 ; }
i f ( i ==0|| i==imageW−1 | |k==0) {dxminusz=0;}
else {dxminusz=( s data [ ind−KOFF+IOFF]− s data [ ind−KOFF−IOFF ] ) / 2 ; }
i f ( j ==0|| j==imageH−1 | | i==imageW−1){dyplusx =0;}
else {dyplusx =( s data [ ind−JOFF+IOFF]− s data [ ind+JOFF+IOFF ] ) / 2 ; }
i f ( j ==0|| j==imageH−1 | | i ==0){dyminusx=0;}
else {dyminusx=( s data [ ind−JOFF−IOFF]− s data [ ind+JOFF−IOFF ] ) / 2 ; }
i f ( j ==0|| j==imageH−1 | |k==imageD−1) {dyplusz =0;}
else {dyplusz =( s data [ ind+KOFF−JOFF]− s data [ ind+KOFF+JOFF] ) / 2 ; }
i f ( j ==0|| j==imageH−1 | |k==0) {dyminusz=0;}
else {dyminusz=( s data [ ind−KOFF−JOFF]− s data [ ind−KOFF+JOFF] ) / 2 ; }
i f ( k==0||k==imageD−1 | | i==imageW−1) {dzplusx =0;}
else {dzplusx =( s data [ ind+IOFF+KOFF]− s data [ ind+IOFF−KOFF] ) / 2 ; }
i f ( k==0||k==imageD−1 | | i==0) {dzminusx=0;}
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else {dzminusx=( s data [ ind−IOFF+KOFF]− s data [ ind−IOFF−KOFF] ) / 2 ; }
i f ( k==0||k==imageD−1 | | j==0) {dzplusy =0;}
else {dzplusy =( s data [ ind−JOFF+KOFF]− s data [ ind−JOFF−KOFF] ) / 2 ; }
i f ( k==0||k==imageD−1 | | j==imageH−1) {dzminusy=0;}
else {dzminusy=( s data [ ind+JOFF+KOFF]− s data [ ind+JOFF−KOFF] ) / 2 ; }

// Ca l cu l a t e grad phi max/min us ing macro de f ined above

gradphimax=sq r t ( ( s q r t (max( dxplus , 0 )∗max( dxplus ,0)+max(−dxminus , 0 )∗max(−dxminus , 0 ) ) )

∗( s q r t (max( dxplus , 0 )∗max( dxplus ,0)+max(−dxminus , 0 )∗max(−dxminus , 0 ) ) )

+( sq r t (max( dyplus , 0 )∗max( dyplus ,0)+max(−dyminus , 0 )∗max(−dyminus , 0 ) ) )

∗( s q r t (max( dyplus , 0 )∗max( dyplus ,0)+max(−dyminus , 0 )∗max(−dyminus , 0 ) ) )

+( sq r t (max( dzplus , 0 )∗max( dzplus ,0)+max(−dzminus , 0 )∗max(−dzminus , 0 ) ) )

∗( s q r t (max( dzplus , 0 )∗max( dzplus ,0)+max(−dzminus , 0 )∗max(−dzminus , 0 ) ) ) ) ;

gradphimin=sq r t ( ( s q r t (min ( dxplus , 0 )∗min( dxplus ,0)+min(−dxminus , 0 )∗min(−dxminus , 0 ) ) )

∗( s q r t (min ( dxplus , 0 )∗min( dxplus ,0)+min(−dxminus , 0 )∗min(−dxminus , 0 ) ) )

+( sq r t (min ( dyplus , 0 )∗min( dyplus ,0)+min(−dyminus , 0 )∗min(−dyminus , 0 ) ) )

∗( s q r t (min ( dyplus , 0 )∗min( dyplus ,0)+min(−dyminus , 0 )∗min(−dyminus , 0 ) ) )

+( sq r t (min ( dzplus , 0 )∗min( dzplus ,0)+min(−dzminus , 0 )∗min(−dzminus , 0 ) ) )

∗( s q r t (min ( dzplus , 0 )∗min( dzplus ,0)+min(−dzminus , 0 )∗min(−dzminus , 0 ) ) ) ) ;

// Ca l cu l a t e Curvature Terms

nplusx = dxplus / sq r t (1 .192092896 e−07F + ( dxplus ∗dxplus )

+ ( ( dyplusx + dy )∗ ( dyplusx + dy )∗0 . 2 5 )

+ ( ( dzplusx + dz )∗ ( dzplusx + dz ) ∗ 0 . 2 5 ) ) ;

nplusy = dyplus / sq r t (1 .192092896 e−07F + ( dyplus ∗dyplus )

+ ( ( dxplusy + dx )∗ ( dxplusy + dx )∗0 . 2 5 )

+ ( ( dzplusy + dz )∗ ( dzplusy + dz ) ∗ 0 . 2 5 ) ) ;

nplusz = dzplus / sq r t (1 .192092896 e−07F + ( dzplus ∗dzplus )

+ ( ( dxplusz + dz )∗ ( dxplusz + dz )∗0 . 2 5 )

+ ( ( dyplusz + dy )∗ ( dyplusz + dy ) ∗ 0 . 2 5 ) ) ;

nminusx=dxminus / sq r t (1 .192092896 e−07F + ( dxminus∗dxminus )

+ ( ( dyminusx + dy )∗ ( dyminusx + dy )∗0 . 2 5 )

+ ( ( dzminusx + dz )∗ ( dzminusx + dz ) ∗ 0 . 2 5 ) ) ;

nminusy=dyminus / sq r t (1 .192092896 e−07F + ( dyminus∗dyminus )

+ ( ( dxminusy + dx )∗ ( dxminusy + dx )∗0 . 2 5 )

+ ( ( dzminusy + dz )∗ ( dzminusy + dz ) ∗ 0 . 2 5 ) ) ;

nminusz=dzminus / sq r t (1 .192092896 e−07F + ( dzminus∗dzminus )

+ ( ( dxminusz + dz )∗ ( dxminusz + dz )∗0 . 2 5 )

+ ( ( dyminusz + dy )∗ ( dyminusz + dy ) ∗ 0 . 2 5 ) ) ;

curvature = ( ( nplusx−nminusx)+(nplusy−nminusy)+( nplusz−nminusz ) ) / 2 ;

F = (−ALPHA ∗ d D [ indg0 ] ) + ((1−ALPHA) ∗ curvature ) ; // Ca l cu l a t e Speed Term F

i f (F>0) { gradphi=gradphimax ;} else { gradphi=gradphimin ;} //Construct Grad Phi

d phi [ indg0 ]= s data [ ind ] + (DT ∗ F ∗ gradphi ) ; //Update Leve l Set Function

}
sync th r ead s ( ) ; //Thread Barr ier Synchron i za t ion

}
}
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CUDA 3D Main Source Code

//

// CUDA 3D Leve l Set Segmentation

// Coded by : Hormuz Mostofi , Un i v e r s i t y o f Oxford

//

// Example Usage :

// Seg −volume=input . raw −mask=mask . raw −x s i z e =256 −y s i z e=256 −z s i z e =256

// − i t e r a t i o n s =1000 −t h r e s h o l d=150 −e p s i l o n=50 −a lpha =0.01

//

#include <s t d i o . h>

#include <s t d l i b . h>

#include <cuda runtime . h>

#include <c u t i l . h>

#define BLOCKDIM X 32

#define BLOCKDIM Y 6

#define BLOCKDIM Z 1

char ∗volumeFilename , ∗maskFilename ;

int ITERATIONS, THRESHOLD, EPSILON;

f loat alpha ;

int imageW , imageH , imageD , N, p i t ch ;

f loat ∗phi , ∗D;

s i z e t s i z e , p i t chbyte s ;

unsigned char ∗ input ,∗ output ;

f loat ∗d phi , ∗d phi1 , ∗d D ;

int i t s =0;

unsigned int Timer = 0 ;

int i , j , k ;

g l o b a l void updatephi ( f loat ∗d phi , f loat ∗d phi1 , f loat ∗d D ,

int imageW , int imageH , int imageD , f loat alpha , int p i t ch ) ;

44
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// loadRawUchar , loadMask , and wr i t eou tpu t f unc t i on s not o f i n t e r e s t

void cuda update ( ){

dim3 dimGrid ( ( ( imageW−1)/BLOCKDIM X) + 1 , ( ( imageH−1)/BLOCKDIM Y) +1);

dim3 dimBlock (BLOCKDIM X, BLOCKDIM Y, BLOCKDIM Z) ;

updatephi<<< dimGrid , dimBlock>>>(d phi , d phi1 , d D ,

imageW , imageH , imageD , alpha , p i t ch ) ;

d phi1=d phi ;

CUT CHECK ERROR(”Kernel execut ion f a i l e d \n” ) ;

CUDA SAFE CALL( cudaThreadSynchronize ( ) ) ;

}

int main ( int argc , char∗∗ argv ){

// Ensure a l l parameters are s e t

i f ( argc <9){
p r i n t f ( ”Too few command l i n e arguments s p e c i f i e d \n” ) ;

e x i t ( 0 ) ;

}

// Parse Command Line Arguments

cutGetCmdLineArgumentstr ( argc , ( const char∗∗) argv , ”volume” , &volumeFilename ) ;

cutGetCmdLineArgumentstr ( argc , ( const char∗∗) argv , ”mask” , &maskFilename ) ;

cutGetCmdLineArgumenti ( argc , ( const char∗∗) argv , ” x s i z e ” , &imageW ) ;

cutGetCmdLineArgumenti ( argc , ( const char∗∗) argv , ” y s i z e ” , &imageH ) ;

cutGetCmdLineArgumenti ( argc , ( const char∗∗) argv , ” z s i z e ” , &imageD ) ;

cutGetCmdLineArgumenti ( argc , ( const char∗∗) argv , ” i t e r a t i o n s ” , &ITERATIONS) ;

cutGetCmdLineArgumenti ( argc , ( const char∗∗) argv , ” th r e sho ld ” , &THRESHOLD) ;

cutGetCmdLineArgumenti ( argc , ( const char∗∗) argv , ” ep s i l o n ” , &EPSILON) ;

cutGetCmdLineArgumentf ( argc , ( const char∗∗) argv , ” alpha ” , &alpha ) ;

// I n i t i a l i s e Feature Image and Mask on Host

N=imageW∗ imageH∗ imageD ;

input = loadRawUchar ( volumeFilename , N) ;

phi = loadMask ( maskFilename , N) ;

// Ca l cu l a t e D( I ) = E − | I − T |
i f ( (D = ( f loat ∗) mal loc ( imageW∗ imageH∗ imageD∗ s izeof ( f loat )))==NULL) p r i n t f ( ”ME D\n” ) ;

for ( i =0; i<N; i++){
D[ i ] = EPSILON − abs ( ( unsigned char ) input [ i ] − THRESHOLD) ;

}

// Set up CUDA Timer

cutCreateTimer(&Timer ) ;

// A l l o ca t e Memory on Device

CUDA SAFE CALL( cudaMallocPitch ( ( void∗∗)&d D , &pitchbytes ,

s izeof ( f loat )∗ imageW , imageH∗ imageD ) ) ;

CUDA SAFE CALL( cudaMallocPitch ( ( void∗∗)&d phi ,& pi tchbytes ,
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s izeof ( f loat )∗ imageW , imageH∗ imageD ) ) ;

CUDA SAFE CALL( cudaMallocPitch ( ( void∗∗)&d phi1 , &pi tchbytes ,

s izeof ( f loat )∗ imageW , imageH∗ imageD ) ) ;

p i t ch=p i t chbyte s / s izeof ( f loat ) ;

// Copy Host Data to Device Memory

CUDA SAFE CALL( cudaMemcpy2D(d D , p i tchbytes , D, s izeof ( f loat )∗ imageW ,

s izeof ( f loat )∗ imageW , imageH∗ imageD , cudaMemcpyHostToDevice ) ) ;

CUDA SAFE CALL( cudaMemcpy2D( d phi1 , p i tchbytes , phi , s izeof ( f loat )∗ imageW ,

s izeof ( f loat )∗ imageW , imageH∗ imageD , cudaMemcpyHostToDevice ) ) ;

// S ta r t Timer

cutStartTimer (Timer ) ;

// I t e r a t e Leve l Set So l v e r

for ( i t s =0; i t s<=ITERATIONS; i t s ++){
cuda update ( ) ;

i f ( i t s %50==0){
p r i n t f ( ” I t e r a t i o n %3d Time : %3.2 f \n” ,

i t s , 0 .001∗ cutGetTimerValue (Timer ) , ) ; }
}

// Stop Timer

cutStopTimer (Timer ) ;

// Write Resu l t Back to Host Memory

cudaMemcpy2D( phi , s izeof ( f loat )∗ imageW , d phi1 , p i tchbytes ,

wr i teoutput ( phi , N) ;

// Free Memory

CUDA SAFE CALL( cudaFree ( d phi ) ) ;

CUDA SAFE CALL( cudaFree ( d phi1 ) ) ;

CUDA SAFE CALL( cudaFree (d D) ) ;

f r e e (D) ;

f r e e ( phi ) ;

f r e e ( input ) ;

}
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