BIWI-TR-269 August 11, 2005

Eidgenossische Technische Hochschule Ziirich Blw,
Swiss Federal Institute of Technology Zurich Computer Vision

Real-Time, GPU-based
Foreground-Background Segmentation

Andreas Griesser
griesser@vision.ee.ethz.ch
Computer Vision Lab, Swiss Federal Institute of Techno)atjyrich

Abstract

This report presents a GPU-based foreground-backgrogmaiesgation that processes image se-
guences in less than 4ms per frame. Change detection wibattiground is based on a color simi-
larity test in a small pixel neighbourhood, and is integdateo a Bayesian estimation framework. An
iterative MRF-based model is applied, exploiting parahalon modern graphics hardware. Result-
ing segmentation exhibits compactness and smoothnesegréund areas as well as for inter-frame
temporal contiguity. Further refinements extend the caliity criterion with compensation for dark
foreground and background areas and thus improving oyegibrmance.

Contents 2

Contents
1 Introduction 3
2 Mathematical Model 3
2.1 The Colinearity Criterion e 3
2.2 Bayesian Estimation e 4
2.3 Adaptive Threshold, MRF e 5
2.4 Darkness Compensation e 7
25 FinalDecisionRule e 7
2.6 lIterative, randomized MRF computation 9
3 Implementation Issues 10
3.1 ProgrammingLanguage e e e 11
3.2 Drawing Context e 11
3.3 Offscreen-Buffers 11
3.4 GPUDataFormats e 12
3.5 Bilinear Interpolation e e 12
4 GPU-based Implementation 14
4.1 TheCalcNormShader e 14
4.2 TheSumNormShader 15
4.3 TheNormMixBackShader 16
4.4 TheNormConverShader e 16
45 TheMRF-lter-Shader 18
451 Center Area o i e 21
452 TOPArea e e e e 22
453 BottomArea e e 24
454 ShaderPrograms 25
4.6 TheSegConverShader 26
5 User’s Guide 27
5.1 Requirements e e 27
5.2 Distributed files e 28
5.3 Library classdescription e e 29
5.4 Example Program e e e e 32

6 Results 33

1 Introduction 3

1 Introduction

Robust and accurate foreground-background segmentaterelatively small but crucial step in several
computer vision applications. It is a key element in sutaeite, 3D-modelling from silhouettes, motion
capture, or gesture analysis for human-computer interad¢tiCl). For several of these - surveillance
and HCI are cases in point - real-time processing is cru¢i@nce, for these applications, foreground-
background segmentation should be extremely fast, as tkeobthe computation time on the CPU has
to remain available for the subsequent stages of proceasithgnterpretation.

As a result, the type of foreground-background segmemtdkiat can be used on-line has typically
been kept as simple as possible, and has led to importantraions on the background. For instance,
in their semi on-line user modeling work, Matusikal. [8] had to resort to a rather simple background
subtraction. On the other hand, more sophisticated algostare available today, like Bayesian pixel
classification based on time-adaptive, per-pixel mixtdi@aussians color modf4, 5. A comprehensive
survey of image change detection algorithms is presentil.ilRecently, Mesteet al. developed a color
similarity criterion[1], which has already performed well in our - offline - gestureogmition setud7].
However, these sophisticated algorithms lack real-tinrfeopmance.

Here we propose a GPU-based implementation of Mester'soappr combined with some refine-
ments to further improve performance. Our implementatekes less than 4 milliseconds per frame
and frees the CPU from this preprocessing step altogethaus, Tour approach is especially useful for
algorithms already using the GPU in the further processiages.

2 Mathematical Model

2.1 The Colinearity Criterion

Mester's method compares the color values at pixels in aaeée (background) image, and a given
image. In particular, all color values within a small windanound a pixel, here always3ax 3 neigh-
bourhood, are stacked into row vectessresp.x for the background resp. the given image, where the
latter will typically contain some additional foregrountjects.

Under the null hypothesi#l, these vectors can be written fg=s + ¢, andxy=k - s + €7, where
¢, andey are additive noise vectors amds an unknown signal vector. Change detection amounts to
assessing whethes, andx are colinear. If they are (the null hypoth-
esisHy), no change is judged to be present and the backgroundlis stil
visible at that pixel in the given image. If not, the pixels aonsidered
- - to have different colors, and a foreground pixel has beendou

Rather than testing for perfect colinearity, one has toaltor some
noise in the measurement process. Indeed, when Gaussisa iBOi
assumed, the unkown ’'true signal’ direction (representedhb unit
vectoru) can be estimated by minimizing the sup?= |d,|* + |d f|*.

By defining
1.1 3l .2 2 32 N N N
Xp vy 9 by vy ogp by...my) g by

with IV pixels in the neighbourhood of the considered pixel, Mesteal. [1] pointed out that the test
statisticD? is identical to the smallest non-zero eigenvalue ofxhe2 matrix XX
)

D2 _ €Zg (XXT) _ GZg |: f07”€ C?"OSS:|

cross back

2 Mathematical Model 4

with three image qualifiers defined as

,_ T
fore = Xy-x;
cross = Xjf- X7 3)
back = xp-Xi.

Clearly, in a3 x 3 neighbourhood, the matriX contains the color values (red, green and blue) of

N = 9 pixels in the foreground (indexed witf) and background (indexed with. Equation (2) amounts
to

fore — D? cross
cross back — D? |°

(4)

Mester[1] empirically showed thaf? follows a x? probability density function wittB(N — 1)
degrees of freedom and a proportionality faetgr Based on the knowledge of this distribution, the null
hypothesis test can be reduced to a significance test, whé&réis compared with a threshotdthrough
Prob[D? > t|Hy)=c with the significance level.

2.2 Bayesian Estimation

A Bayesian analysis allows the above decision to be made dna@ed basis. The result of this analysis
will be a foreground or ‘change mask), found by maximizing its a-posteriori probability (MAP)h&
binary change mask consists of pixels with labgls= « (unchanged, background) gr = ¢ (changed,
foreground). Based on the distance measurem®@nchange labels are assigned following the decision
rule:

p(Qc|D2)

p(Qu|D2)

A’changed’ label is assigned to a pixel if the left term isajex than the threshold otherwise it gets
'unchanged’ assigned to it. Using Bayes’ theorem we get

p(D*Q0) <, p(Qu)

p(D?Q.) & p(Qc)

In order to calculate the fraction on the left side of the abeguation, both conditional probability
density functions must be estimated. Within a local neigitbood comprisingV pixels, both pdf's are
modeled as zero-mean Gaussian distributions

1 N _ D2

W00 = (=) e
2 1 N
p(D7|Qu) = <m> e 2o

with variancesr. ando,,. As foreground areas typically exhibit color differencé$aoge magnitude w.r.t.
the background, the variane€ is much larger than the varianeg caused by noise. Thus, the decision

rule can be rewritten to
N 2 2
Tu ~ 27 t52
_— - e c u
Oc

SAVo
~~

SAVo
~~

which is equal to

o
m\bw
:qunT
N):Q
2SA Vo
7N
| Q
)
N
=2
o~
=
O
<
S~—

2 Mathematical Model 5

Aso? > o2, the sump? — 02 ~ 02 and thus

e% E <E>N + P(Qu)
u Ouy p(Qc)'
ExtractingD? yields
¢ N
D2 > %2 1n <0_>) 202 n (p(Qu)> ©
v Ou p(QC)

with a static threshold’s and an adaptive threshold,;q: -

2.3 Adaptive Threshold, MRF

Without any prior knowledge of the change mask, the adaphixesholdT7, 4., in equation (5) i be-
cause both probabilities(Q,,) andp(Q.) would then be equal. This often results in scattered foregito
and background segments. To remedy this, one would likeitm mpatio-temporal compactness con-
siderations into play. Indeed, foreground objects tendoteclarger and more compact regions. If the
object moves slowly compared to the framerate, this addsypdeal smoothness.

Such considerations are now added. A first element is théaspatmpactness. A pixel should have
a higher chance of being considered foreground if severdkafeighbours have this status. This is a
bit of a chicken-and-egg problem, however, as this assuneeslrgady have a mechanism to decide on
the neighbours first. In practice, this deadlock is solvedidsigning an iterative scheme. This will start
with all pixels as background during the first iteration fioe first frame. After that, the results from the
previous iteration for that frame are used, or that of theitagation of the previous frame in case a new
frame is started. Note that the latter choice pushes towardporal smoothness.

Still following Mester[1] and in order to bring the spatial compactness idea to besaghthnge mask
is considered to be sampled from a two-dimensional Gibbd{Marandom field (MRF). Hereby the a
priori probability is expressed by

PQ) = 5@ ©

with a normalization constarif and an energy-tern(Q). The smoother the boundary of the change
mask within the considered neighbourhood (windd#, the lower the energy-ter(Q) is. Evaluating
the smoothness and compactness can be simplified to acarwttadnges between pixel pairs only. A
pixel pair consists of two adjacent pixels in either horiadbnvertical or diagonal direction. Within any
neighbourhood region, two kinds of pixel pairs can be digtished: those who comprise the currently
considered pixel, denoted Exal pixel pairs, and all other pairs not comprising the curréxglpdenoted
asglobal pixel pairs (see figures 1-a,b).

Hence, the energy-term can be split into a local and a gl@ai:t

E(Q) = EL(Q) + Ec(Q). (7)

Based on a squared image grid, the 8 possible local pixe$ pathin a 8-neighbourhood can be
divided into two groups: 4 pairs of horizontal/vertical igafhv-dir.) and 4 diagonal pairsi{ag-dir.) (see
figures 1-c,d). Designating the number of adjacent pixefsvidirection asvg and indiag direction as
v wrt. the labelg;, the local energy term can be rewritten as

EL(Q) = ve(g) - B +vo(q) - C', (8)

wherebyB’ andC’ are constant multiplicative factors influencing the leviet@mpactness. Thus, equa-
tion (7) is reformulated as

E(Q) =vp(q:) - B'+ve(q) - C' + Eq(Q), 9)

2 Mathematical Model 6

(a) Global Energy, globab) Local Energy, loca(c) Local pixel pairsirho- (d) Local pixel pairs in
pixel pairs pixel pairs direction diag-direction

Figure 1: Local and global pixel connectivities.

Combining (9) with (6) and accounting for both labels= ¢ (changed) and; = « (unchanged)
yields to

p(QC) — % . e_(VB(QiZC)-B’+uc(qi:c)-C’+EG(Qc))’
p(Qu) e % . e_(VB(qi:u)'B/+VC(qi:u)'C/+EG(Q1L)).
When inserting above formulas into equation (5), the adatireshold term is
Todapt = 202 -1In (p(Qu)>
ot p(Qc)
= 202 . [(VB(qi:c) —vp(gi=u)) - B' + (ve(gi=c) — vo(gi=u)) - C/] . (20)

One can easily observe that

vp(gi=c) + vp(gi=u) = 4
ve(gi=c) +ve(gi=u) =

By setting
C'=DB'/2
and defining
B:=o¢2.- B
we can simplify equation (10) to
M = 2-vp(g=c)+ vc(gi=c)
Todapt = 12B —2BM. (11)

Indeed, the lower the amount of foreground pixels in themurding change mask ig;&c), the lower
M and therefore the higher the adaptive threshold gets,asitrg the barrier at which a considered pixel
may be assigned to foreground. This intuitive behavioultesn smooth and compact regions, even in
small neighbourhoods, i.8.x 3 pixels.

2 Mathematical Model 7

2.4 Darkness Compensation

Though an intensity-invariant method as Mester’s doesigeorobustness against shadows and lighting
changes, such invariance also has drawbacks. Often, pmt édreground or background will be dark,
i.e. close to black. As black can be seen as a low intensisiomiof any color, the current approach will
never trigger segmentation in those areas.

Our solution consists of adding an additional componenhéovectorsx, andxy in eq. (1). This
additional component has a fixed value\d0,.. (The awkward use of the square-root has been opted
for as this simplifies further notation; e.dore, cross, and backf eq. (3) are now increased l8y,..)
This additional component renders the color similarity suga more sensitive to differences, esp. when
dark pixels are involved. Indeed, this additional compares the effect of lifting th&/V-dimensional
ground plane in the enlargexdV + 1-space, to height/O,., thereby distinguishing vectors that were
colinear but had different norms.

When running these nedWV + 1-dimensional vectors through the criterion, we come to ttlewing
observations:

e The resulting distances never decrease (proof is straigtefd), thus regions that were previously
segmented, remain segmented after the manipulation @msame threshold).

e The comparison of equal vectors remains unhampe2dg 0 in both approaches).

e Moreover,wherj|x¢|| = ||x;|| (more or less equal intensities), there is no impact whaesaen the
distance measure.

e \ectors that were previously colinear but of different sia@ill not remain colinear. The impact is
dependent on the difference in intensity.

e As Oy goes to infinity, the distance measure becolfyese + back — 2 - cross)/2. This equals
|xs — xp]|/2, which still yields a valid distance measure for backgrosegmentation, but to-
tally lacks the illumination invariance property usefuldope with shadows. The choice 6.
determines how illumination sensitive the result is.

The above observations show that the provided manipulaimon correctly segments dark coloured
areas, compared with bright background. This was prewoust the case, as these areas were seen as
noise on &-vector. Furthermore, normal operation, where foregrolmoits like background or where
foreground was already segmented from the background wiithe extra compensation, is not impaired.

2.5 Final Decision Rule

We can now convert the final decision rule into a form, whiclsugtable for computation. First, the
determinant in equation (4) has to be solved involving a ssjuaot term, which is often a bottleneck in
high-speed implementations:

1
D? = 3 <fore + back — \/(fore — back)? +4- CTOSSQ) : (12)

Fortunately, the square root must not explicitely be caled, butD? directly compared to a threshold
T =T, + Thaape (s€€ formula 5). Without loss of generality we rewrite theisien rule and get

D?* ¢ T,

which assigns the 'changed’ label only when the above ingmués fulfilled. Applying this rule to (12)
results in

: (fore + back — /(fore — back)? + 4 - crossQ) s T,

N |

2 Mathematical Model 8

which is equal to

fore4back —2T 5 +/(fore —back)? + 4 - cross?.
Taking the square of both sides yields two inequalities
(fore+back —2T)* £ (fore — back)? + 4 - cross®
fore+back —2T = 0.
The former one can be further expanded:
fore-back — fore-T —back - T +T? < cross®
or in an even simpler form
(fore —T) - (back —T) 5 cross®.
Finally, the decision rule is reduced to testing the follogviwo inequalities only:
(fore —T) - (back —T) % cross®
fore +back = 2T.

The first inequality shows that eithgiore and back are both> T', or both < T, while additionally
considering the latter inequality forcg®re > T or back > T. Therefore we can again simplify the
above formulas:
(fore —T) - (back —T) 5 cross®
fore > T.
As described in section 2.4, darkness compensation isrates by adding),. to each of the three
qualifiers fore, back andcross, which yields
(fore+Og. —T) - (back + Og. —T) > (cross+ Odc)2
fore+ Og. T.

Vo

We define a new total threshold
Ty =T — Oge = Ts + Todapt — Ode (13)
and rewrite the two inequalities:
(fore —T) - (back —T;) S (cross+ Og.)?
fore = T

Now, when also the adaptive threshold in equation (11) igirtted, the final decision rule set can be
formulated:

M = 2-vp(g=c)+vo(gi=c)
T, = T,+12B—2BM — Oy,

14
(fore —Ty)(back —T;) = (cross+ Ogc)? (14)

fore = Ty

Influenced by three user-defined parameters, a static tice$h, a darkness offsed,. and a com-
pactness valu®, a label 'changed’ is assigned to a pixel if both inequaitiee fulfilled. Otherwise the
pixel's label is set to 'unchanged’. Notice that the:k qualifier only depends on the background image,
which in practice is the average over several backgroundésizand has to be computed only once, while
fore andcross need to be updated every frame.

2 Mathematical Model 9

2.6 lterative, randomized MRF computation

Under consideration of &x 3 neighbourhood, we can observe that pixels with a chessllistahce> 2
do not directly affect each other and can therefore be hdndlen parallel.
This processing step, denoted as substep, operates on et sfitike input data,

k1T TKTT TKTI whereby pixels within each subset are mutually independent the MRF compu-
mn|mn| mn| tation. To cover all the input data, several substeps habe &xecuted in sequential
KT KTk | manner. The smallest number of substeps is given by the pactition shown in the

{(n In rkn In Ln In left image. Four substeps [, mm andn are executed one after each other, whereby the

order is randomly chosen, ensuring a uniform distributigardime. After all sub-
steps are done, the whole process is repeated several tittiesamvergence in the
segmentation wrt. compactness is reached. From the impteti@ point of view, at each iteratighwe
select the execution sequence by randomly picking one df4tmossible permutations 6k, [, m,n) by

S; = rand (perm(k,l,m,n)). (15)

Itis important to mention that the result of each substeprigen back into the change mask, which serves
as input for the next substep. A priori knowledge from thevimes frame’s change mask is integrated
by initializing the change mask with the prior change maskten start the MRF-iterations. If no prior
frame is given, the previous change mask is set to full bakut, i.e. black color.

The program flow, as depicted in figure 2, starts with the cdatfmn of fore, back andcross based
on the average background imagé: and the current foreground imad&~. This is followed by one
iteration comprising four substeps with the change mask@frevious frame as input and a parameter
set 1 (static thresholdy, darkness offse®,. and compactness value,). Finally we run the iteration
j times with the second parameter set, where the static ticksimd the darkness offset both remain
the same while the compactness value differs between bethad parameter sets. The outcome of all
iterations represents the final segmentation, which sesé@sput for the next frame.

FG-Image —
For each pixel:

Compute
fore, cross, back

BG-Image —

v

Ts, Iterative MRF
Odc, 4 substeps
Bl 1 Iteration o
A
+ Change
_v Mask Q
Ts, lterative MRF ~
Odc, 4 substeps
B2 j Iterations

Figure 2: Program flow for the iterative MRF computation.

3 Implementation Issues 10

3 Implementation Issues

Following the decision rules (14) and the iterative, ranthath MRF-computation approach, we can now
design a GPU-based implementation. As modern graphicsmMaaedconsists of multiple independent
processing units, they seem to be predistined for parael pperations and thus faster than nowadays
CPU’s. Although programming the GPU requires some in-d&ptiwledge of the underlying hardware
architecture in order to fully optimize the application &peed, more and more work is done on imple-
menting general-purpose computation on graphics hardigaet12]). Unfortunately, several limitations
are imposed by device drivers, for example hardware mahufxs often prioritize development under
Windows operating system over Linux. The following secsiaiescribe some hints and useful techniques
for general GPU-based programming. The graphics card we: hiseeby is a NVidia GeForce 6800GT,
also known as NV40.

In the last years GPU manufacturer as well as the OpenGL diunscagreed for two user-programmable
processing units on the graphics hardware:

e A Vertex Shader,
e A Fragment (or Pixel) Shader.

Figure (3) shows the processing pipeline using these twgraromable Shader units. Via OpenGL
or DirectX the user defines drawing primitives and textugeoMmetry stage). For example one wants to
draw a rectangle defined by it's 4 corner vertices, whereloh @artex may also correspond to a texture
coordinate. These drawing commands are sent to the grdmdnid®are, where the 3D-geometry is stored.
Each of these vertices is processed by the Vertex Shadersignasy per-vertex informations, such as
color, texture coordinate, 2D-projected coordinates, landerforming a 3D-2D transformation.

The rasterizer then projects the 2D-rectangle onto theidgpsurface, which has similar dimensions
as the final framebuffer. Hereby, the intermediate 2D-puadlies as well as the texture coordinates are
computed by linear interpolation.

For each pixel within the rasterized rectangle, a sepanagnirent (Pixel) Shader is executed, which
assigns a color and depth value to the pixel. In case of text#pping activated, the pixel’s color depends
on the color of one or more textures, which reside in textueenory of the graphics hardware. Although
memory bandwidth is up to approx. 30GB/s, the latency fohgegture lookups is still a bottleneck in
processing performance.

After a color and depth value is assigned to each pixel, thakees are stored in a target buffer,
typically the visible framebuffer. Interesting for genlgpairpose computing on the GPU is the usage of
so-called offscreen buffers, which allow for writing intaledicated non-visible buffer. Only if necessary,
the final result image is displayed by writing into the framféér instead or by copying the PBuffer
contents into a texture and project it onto the visible fraaifer.

Geometry | Vertex Rasterization Fragment R Framebuffer,
Storage “| Shader Shader "| Offscreen Buffer

/

H Texture Storage
— + Filtering
CPU 1 GPU

CPU

\4
\4

\4

Figure 3: Processing pipeline on graphics hardware usiogrammable Shader units.

3 Implementation Issues 11

3.1 Programming Language

Among the different programming languages available onntlagket, the following separation can be
made:

e High-Level Shading Language

— HLSL
— GLSL
— Cg

e Low-Level Shading Language (assembler instructions)
e OpenGL 2.0

The High-Level Shading Languages have a C-like commandsgyartd interface the user application
through OpenGL or DirectX. HLSL is constrained to the Operi@krface, whereas GLSL works only
with DirectX. Cg (C for graphics), developed by NVIDIA Conmtion together with Microsoft Corpora-
tion, provides both interfaces to OpenGL as well as to DXeotd is therefore our choice of programming
language. Shader programs can be compiled on beforehandiog duntime, whereby the resulting as-
sembler instructions are executable on the current haedwastead of using a high-level language, one
might also directly write the Shader application in puresassler code with the risc of lacking interop-
erability and hardware compatibility. In our applicatiore wse Cg together with the OpenGL interface
under a Linux operating system.

3.2 Drawing Context

In order to allow multitasking on the graphics hardware hesgplication accessing the GPU must have
it's own drawing context. Under Linux and OpenGL this is mgat by toolkits such as glut, Qt or gtk.
Notice that only one context can be active at a time. In the cadsultiple contexts this calls for context
switches, which are - despite of high memory bandwidth - iiswary cost-intensive.

3.3 Offscreen-Buffers

The programmable Fragment Shader computes the color ati\edpe for an output pixel based on the
previous color of the pixel and the assigned textures. ThHeo@e 6 series can access up to 8 textures
within the Shader program, whereas the newer GeForce &smieaccess up to 16 textures. Reading
from the framebuffer is not granted in this Shader.

The final color and depth value is written into a buffer, tylig the displayed framebuffer. Often
it is not required to display intermediate results of an magilon rendering in multiple steps or using
multiple Shader programs in serial. This is where the rol@ aon-visible (offscreen) buffer comes
into play. Under Windows operating system the framebufer be switched to a readable mode and
thus acting as a normal, readable texture for the Fragmeade®h Under Linux only the latest driver
versions support this kind of operability, also knownfi@snebuffer objectsMost common is a special
PBufferobject, which is a pure offscreen and write-only storaget.vitre Shader unit. This means that a
Fragment Shader program can write into a PBuffer object attiome instance. Afterwards the contents
of this buffer may be copied into a dedicated texture memminych itself can then be read by the Shader
programs.

Indeed, this requires some additional memory for the texstorage and, in case of multiple PBuffers,
several context switches. In our application we use only PBaffer object, whereby its contents are
copied into different textures, dependent on the currealylied Shader program.

It is important to mention that PBuffer objects require advdrawing context on beforehand in order
to operate safely, which is the task of the application frar& on the CPU. PBuffer objects can store

3 Implementation Issues 12

3Byte (RGB) or 4Byte (RGBA) unsigned char data as well asifigapoint (16bit and 32bit on newer
hardware). We found out that the best timing performanceashed by using standard unsigned char
data format and that especially floating point texture Iguzkare rather time consuming.

3.4 GPU Data Formats

As modern graphics hardware not only implements unsignaijoed 8bit data formats but also floating
point formats in 16bit or 32bit (newer hardware operates ats 128bit formats), it is important to keep
in mind the times needed for texture lookups or buffer capies

In our algorithm we have to compute the three image qualiffers:;, back andcross, whereby the
hardware imposed each pixel’s value ranging from 0 to 1. Qimly, 8bit resolution per value is not
sufficient for accurate computation and therefore we erpented with a 16bit floating point format.
Unfortunately, the texture lookup times are distinctivblgger than on unsigned char 8bit formats. As
the Shader internally operates on 32bit floating point regmi, we looked for a storage type providing
acceptable accuracy combined with good timing performa@gesupports so-called packing functions,
which allow for stacking two 16bit float values into four 8hitsigned char's. Clearly, each image quali-
fier is truncated from the internal 32bit float to a 16bit floatigpacked into 2 Bytes of the 4Byte-RGBA
unsigned char buffer. This special mode guarantees thesfastxture lookups together with accurate
pixel resolution.

3.5 Bilinear Interpolation

Since texture lookups are always time-expensive, somatiprs on pixel neighbourhoods can be simpli-
fied using the bilinear interpolation functionality on ghégs hardware. Figure (4-a) shows how bilinear
interpolation works on two neighbouring pixels.

C1

C1

(@) (b) (d)

Figure 4: Bilinear Interpolation on the GPU reduces the iregunumber of texture lookups for neigh-
bourhood pixel operations.

Based on the 2D-coordinates of the current piXgl the new texture coordinates are
T. = (u; + a,v;),a=0...1

wherebyu; is the base coordinate 6f; in horizontal direction and; in vertical direction. The so-defined
area covering both texe(s; andCs is shown as dark-grey shaded box in the figure. Notice thahGpe
has its coordinate system origin in the bottom left corndrergas most image coordinate systems start
on the top left corner. The further explanations are basati®@@penGL system.

The texture lookup with the new texture coordinaféseturns a color valug' of

S =tex(Tt) = tex(u; + a,v;).

3 Implementation Issues 13

Since each pixel has a size ok 1, the left pixel with color value”; is covered by the ared — «) and
the right pixel covered by«). Hence, the interpolated sum, returned by the texture lpoisu

S=tex(Te)=(1—a)-C1+a-C2.

When calculating the exact sum of both pixels, (&.+ Cs, only one texture lookup withk = 0.5 has
to be done yielding

Cl1+C2

Sa=05 = 5

Notice that on the GPU when using 8bit unsigned char fornoatly, fixed point values between 0 and 1
are possible. Greater values will be clamped to 1. The almlup guarantees that the resulting color
value always lies in that range, but a scaling factor of 2 bdmtmanaged for further operations.

In figure (4-b) the bilinear interpolation is extendedwhdirection and thus generalizes the texture
coordinates to

T. = (u;+ a,v; +), a, f=0...1,
again based on the bottom left pix&|. The resulting lookup generates the following color value:
S=tex(Te) =1-a)1-0)-Cir+a(l1-0)-C24+af-C3+ (1 —a)p - C4.
When computing the sum of all 4 pixel values, the offsend are both0.5, which yields

Ci+Co+Cs3+Cy
4 b

Sa,3=05 =

with a scaling factor of 4. Instead of 4 texture lookups andt8rmediate summations, we reduced the
computation of the sum to only one texture lookup.

We further extend this approach to compute the sum of allpixéhin a 3x 3 neighbourhood, which
is often required in computer vision algorithms. Herefoeeneed 4 texture lookups, as depicted in figure
(4-c). We can observe that the center pigglis accessed 4 times, each pixel denoted'ag times and
each corner pixel’; only once. Each of the interpolated lookuiscomputes the sum of 4 pixels and
all 4 S; together result in the final sum of all 9 pixels. Considerihg bottom left texture lookup and,
without loss of generality, assuming &l have the same color value, we retrieve

Si=(l-a)* Cl+2a(1—a) Cy+a*-Cy.

It turns out that”; occurs in the final sum 4 times and eachtwice, but in the real sum they appear only
once. Therefore we have to equal their coefficients by

1-(1-a)P=2-a(l—a)=4- o .
—_——— —— ~~
Cy Co Ca

Solving fora results in
a=1/3.

Inserting intoS; and summing up all 4 lookups yields

9 4
Y oi==>"8;
i=1 i=1

= Ne]

4 GPU-based Implementation 14

Based on the center pixél; the texture coordinates can be rewritten to

Ten (u; — 14+ a,v;, — 1+ «)
Teo = (ui—14+o0,v+1—a)
Tes = (ui+1—o,v,—1+a)
Tea = (u +1—ozvl 1—a)

9
ZC} = % -Ztew(TC,i).
i=1 i=1

In figure (4-d) another example is given, computing the sumllgixels in the 8-neighbourhood of
the center pixel without taking the latter into account. kganly 4 texture lookups and 3 summations
are required instead of 8 lookups and 7 summations.

The above techniques gain enourmous speedups in applisattomputing the weighted sum of
pixels in a local neighbourhood. It is important to mentibattbilinear interpolation is activated only
when texture filtering is turned on, i.e. the minification€filt This filter is applied whenever a texel
(pixel in the texture) is smaller than the resulting pixethe output buffer. Unfortunately, uploading a
texture to the graphics card with minification filter enabtedults in higher upload times. For example
on a Pentium4 with 3GHz, AGP8x, NVidia GeForce 6800GT, a-6480 pixel RGB image is uploaded
within 1ms without minification filter. Enabling the lattereyds approx. 2.5ms upload time. Hardware
manufacturer do not explicitely explain this behaviout, ibis important to keep this fact in mind when
running Computer Vision algorithms on the GPU.

Despite the Fragment Shader operates on 32bit floating datat the interpolation in hardware is
performed with much lower resolution. NVidia claimes thieterpolation is based on 8bit, whereas ATI
has only 5 bit resolution. Clearly, the factaieand 3 are quantized with a resolution of 8bit resp. 5bit.
Internally, both manufacturers gain their speed by readirighe texel coverage based on twodimensional
lookup-tables, wherea and 3 are used as indices. Although rendering results look nicktlaa user
won't recognize a difference, the gathered results are rmthematically exact. This drawback allows
the usage of bilinear interpolation only when no highly aetel results are required, such as in the
computation ofd/ in equation (14). For the summation of the image qualifferse, back andcross, the
interpolation cannot be applied, also because of the dpkgliit-packed data format used.

4 GPU-based Implementation

Figure 5 gives an overview of the program flow of the GPU immatation, whereby a fixed neighbour-
hood of3x 3 is used. The round-shaped boxes in the left column symbibiedifferent Shader-programs,
which are described in the following sections. Each Shad#rggs information from one or more inputs
and writes into an offscreen PBuffer object. A copy-commafidrwards transfers the currently written
data into the target texture, as depicted in the right coluirereby not the full texture object has to be
written but just the affected memory areas (grey-shadedamight column of the figure).

4.1 TheCalcNorm-Shader

This first Shader steps through the input image, calculdtngach pixely;=[r; g; b;] at location: the
three qualifiersf;, b; and ¢; based on an input imagéG and the background average imagé&' by
computing the following three dot products:

T
fi = Yif Yis
_ T
bi = Yip Yip
¢ = Yif- yZb

4 GPU-based Implementation 15

FG BG
fore/cross back
Y Y
(CalcNorm)—» Copy
fore/(;oss back
\
(SumNorm J—> Copy
Ts,0dc,B1,B3 -
* v fore/cross
(NormConvert)—> Copy
M min
v v j-lterations 4 Substeps
Internal Mask
(MRE-lter }~ Copy emal b
\
(MaskConvert)—> Copy Ext. Mask

Figure 5: Program flow for GPU implementation.

The indicesf andb denote foreground and background pixels. The dot produnpatation on the GPU
is rather trivial, it is executed within one machine opematand thus much faster than a CPU variant. It
turns out that decision rule (14) is only applicable whertake qualifiers have at least 16bit resolution.
As described in section 3.4, we pack two 16bit floating poatadnto one 32bit RGBA buffer. Each of
the two required buffers has the same dimensions than tiu iimage and a depth of 4Byte, thus being
a 1st storage level buffer (see fig. 6 in section 4.4).

Only when a background image has changedjtbeffer has to be updated, while remaining constant
during normal operation. Hence, we pack the valfiesndc; in one RGBA texture and; in a separate
RGBA texture.

4.2 TheSumNorm-Shader

After the dot products are computed per pixel, the threeifigis fore, back, andcross can now be
derived by following eq. (3). Accounting fof;, b; and¢;, the equation is simplified to summing up all
dot products in the neighbourhodt; around the pixel locatiost

fore = ij

jeW;

back = Y b
JjeW;

Cross = Z C]'
jeW;

As mentioned in section 3.5, hardware accelerated bilimtarpolation cannot be performed because of
the packed 16bit data format used. Agdinre andcross are stacked in a RGBA texture whiteck
remains in a separate RGBA buffer. Notice thatk has to be computed only once during normal
operation and needs to updated only when the backgrounceilmegychanged.

4 GPU-based Implementation 16

4.3 TheNormMixBack-Shader

As will be seen in theNormConverShader in section 4.4, memory conversions are performedder
to optimize the amount of texture lookups and to gain full powf the GPU by operating on 4 color
values (RGBA) in parallel. The texture buffer for thfere and cross qualifiers are already optimally
used, whereas the buffer for theck values is only filled half, i.e. the first 16bits of the 32bibistge is
written. Indeed, by splitting théack texture into two halfs and copying the data of the secondihdf
the unused 16bits of the first half, we can reduce the amoueipiired texture lookups in the following
computation steps. Clearly, by applying a texture lookup,obtain twoback values at once. This quite
simple task is performed by tiéormMixBackShader.

4.4 TheNormConvert-Shader

Now that all parameters for testing the decision rule (14) kwown, the iterative MRF computation
begins. However, for each substep in an iteration the reduitequalities have to be recalculated. As
this would slow down the overall process, the ruleset isrmatdated to a simpler test. The only variable
during a MRF iteration is\/ and therefore we can rewrite the decision rule based/orWe first define

a new parametes

T, +12B — Oy

S = o

which simplifies the definition of the total threshdlito
T, = 2B-S—2B-M.
The second inequality of decision rule (14) now turns into
fore 5 2B-S—2B-M,

from which M is extracted

. fore
M > S 55 (16)
The first inequality of decision rule (14) turns into
(fore — Ty)(back — Ty) 5 (cross + Oge)?
fore-back — fore- Ty — back - Ty + Tt2 > (cross + Odc)2
fore-back — (2B - S — 2B - M)(fore + back) + (2B - S — 2B - M)?> % (cross + Og.)>.
By defining
Ko V/ (fore —back)? + 4(cross + Ogc)?
o 4B
and solving forM we get
. fore 4+ back
M $ S+K T I (17)

As a’changed’ label is only applied when the inequalitied) @nd (17) are both fulfilled, the conjunction
of both formulas yields:

c back
M < S—i—mcwc(—];O;Q,K_forell%)7

4 GPU-based Implementation 17

which is equal to

fore

M < S—
” 2B

+ mazx (O,K+M>.

4B

M, min

We summarize the above formulas and get a decision rulewsitbke for fast implementation:

M = 2-vp(gi=c) +vc(gi=c)
V/ (fore —back)? + 4(cross + Oqe)?
K pr—
4B
g _ Ts+12B — Oy,
; 2B ; - (18)
Mpyin = S— 2();6 + max (O, K+ %)

C

M % Mpin,

Notice that during the MRF iteration, the image qualifigrs-e, back andcross remain constant, as
well as the parametetsand K. Thus,M,,;, can be pre-calculated w.r.t. a parameterBel, andO,..
Due to the fact thal/ can only vary between 0 and 12 and therefore consumes ontg,dbth7,,,;,, 1
for the first parameter set and,,,;,, » for the second parameter set are packed into one 8bit cdliee va
by (Mmin,1 < 4) | Mpin2). As described in section 2.6, the iterative MRF-compatatperates
on 4 subsets of the input data. These subsets are randondgrcland sequentially processed. In order
to have this processing step independent of the curreridgtsel subset of the input data, i.e. the change
mask with labels 'unchanged’ (=value 0) and 'changed’ (ggdl), we split the latter into 4 equally sized
data buffer. Figure 6 gives an overview of the implemented dauctures.

depth=1Byte depth=4Byte

Na

Np

nin Ng
Internal Mask Format:

nin Ny

depth=1Byte depth=4Byte

=

h/2

w/2

h/2

~|3 |~ |3
~13 |7 |3

w/2 w/2

— —

Input Data, 1st Storage Level 2nd Storage Level

Figure 6: Data formats used on the GPU

4 GPU-based Implementation 18

The input data obviously has the same dimensions than tineesggd image mask, denoted as height
h and widthw. Since the change mask pixels can only store two values (thd buffer has a depth of
1Byte. Each 2« 2 block of input pixels consists of elements of the 4 subketsm andn. Starting at the
first storage level, the input data is then separated into shang blocks, which each has half the width
and half the height of the input data. MRF computation is newiggmed on one of these equally sized
memory blocks.

Due to the fact that the graphics hardware can process 4Rywmsce, we decided to convert the 4
subsets into a second storage level, whereby the resubtipttp i 4Byte. This is done by vertically slicing
each subset into 4 equally sized subblocks and assigningtthene of the 4 available color channels
g, b anda. Clearly, the bottommost quarter of the subkés$ assigned to the red channel of the second
storage level, that is,.. The topmost quarter of the same subset is stored in the algranel §,) and
so forth. As depicted in figure 6 each subblock has now a defp#iByte and dimensions)/2 x h/8.
Combining these 4 subblocks into one storage buffer leattetmternal mask format, on which all MRF
computations are done by processing 4 pixels in parallel.

The tasks of thé&lormConveriShader are the following:

1. Fetchfore, back andcross, corresponding to the current pixel location,
2. ComputeM,,;, 1 andM,,;, » for each parameter set and combine both in a 1Byte V&g, ,
3. Store the resultingd/,,.;,, value in a 1st storage level PBuffer.

Since the image qualifierfore andcross are no longer needed by successing computations, over-
writing the texture memory, which storg¢ere andcross, by the values\t,,,;,, reduces the overal amount
of texture memory usage. Thus, after tlermConverdShader has finished, the PBuffer is copied into
the first storage level texture, where the two 16bit quatiffer-e andcross have been stored previously.

45 TheMRF-Iter-Shader

As already mentioned in the previous sections, the iteraliRF-computation comprises 4 substeps, each
of which solves the MRF for compactness and smoothness.igtiene by calculatind/ per pixel and
comparing it with the stored valu¥,,,;,,. The different subsets are selected based on eq. (15).

As calculation ofM,,,;, for a pixel within a subset depends on its surrounding neigtd) special
care has been taken on the cutting edges, where the slicihg sfibset into the 4 color channels occurs
(see figure 6). For examplé{,,.;, has to be computed for a pixel in the top row of the sulisdtred
channel oft), which, amongst others, requires access to pixels onalioge. Indeed, these pixels do not
reside in the same color channel, but nowkjn(green channel of). Therefore we distinguish between 3
processing areas within each subset, as demonstrated fia figu

| top 1px
I
I
h/8-:
bottom o | 1pX
wi2 !

Figure 7: Separation into 3 processing zones foltifrF--Iter-Shader

4 GPU-based Implementation 19

In the shown example, the subgets separated into 3 vertical pieces. Thg- and bottom-parts
are one pixel high, whereas thenter-area covers the rest of the data. The MRF-computation is now
performed on each area sequentially, whereby again opesatire performed in exploit the 4Byte-
parallelism. Clearly, within each of thip, center andbottom areas we process the color channels
r, g, b, anda of a selected data subset at the same time.

-

Select Random
Substep Sequence

Select Substep
ﬁ Vertex- and Fragment-Shader on GPU

'
! . 1 . ! . Texture 1 [
A 4 v A 4 —* v A4 ﬁ v A 4 |°°kuP: “ .
k

/ Read Mmin and prev. Mask / / Read Mmin and prev. Mas| / / Read Mmin and prev. Mask / : 1
Int. Format .
Compute M Compute M Compute M

0

Input Format

Fragment
Shader
Output
______________________ PBuffer, top

—»| | pBuffer, center

= = -»| | PBuffer, bottom

4 substeps finished?

j iterations
finished?

Figure 8: Control-Flow (solid lines) and Data-Flow (daslieds) of theMRF-Iter-Shader

The Shader’s control- and data-flow is shown in figure 8. Tloegss starts by choosing the sequence
of the 4 substeps, [, m, andn on the CPU. For each substep in this sequence and the camg®isireas
top, center, andbottom, the MRF-Iter-Shader solves the MRF. This computation includes thewviatig
steps:

1. ReadM,,;, from the texture buffer (1st storage level texture),

2. ComputeM, dependent on the local pixel neighbourhood, by readingitked labels stored in the
working, mask buffer

3. Apply the segmentation decision rule by assigning anamgéd label (pixel value 0) or a changed
label (pixel value 1) followingV S M,..;.,.

The output values stored in the offscreen PBuffer are theieddnto the previous mask buffer and thus
the old values are overwritten. All computations are repeaintil the required number of iterations is
reached. Notice that the first iteration operates on thedasimeter seB;, T, andOg4. while successive
iterations use the second parameteisetls andO,4.. At the very first beginning the internal mask buffer
is initialized with all pixel labels assigned an 'unchangedbel, i.e. filling the internal mask format with
black color.

4 GPU-based Implementation 20

In the following sections a detailed description of the catagion of M is given w.r.t. the processing
areadop, center, andbottom.

Keeping in mind that each 2 2 block in the input image consists of the subsets, m, andn,
the direct neighbour on the right side of an elemignis an element of the subsktThis neighbour has
the same relative texture coordinates in the 1st storags. [dvor example, the texture coordinates of
pixel k; areT,. = (u,v). The right neighbour has the same relative coordinatessibcé the subsets are
vertically positioned in the second storage level, thesaddlte coordinates in the latter differ. The full
pixel correspondence between input pixels and the intenaak format is given by table (1).

ma(0,5-1) nq(0, 2-1) ma(1, E-1) ng(L, B-1) ma(%-1,2-1) | na(%-1,%-1)
ka(0,2-1) 1a(0,2-1) ka(1,2-1) lo(1,5-1) ka(B-1%-1) | la(5-1,%-1)
me(0,0) n4(0,0) me(1,0) nq(1,0) ma(5-1,0) nq(§-1,0)
k4(0,0) 1,(0,0) k4 (1,0) 1,(1,0) ko(%-1,0) 1,(¥-1,0)
my(0, B-1) ny(0, 1) my(1, 2-1) ny(1, 5-1) my(S-1,2-1) | ny(¥-1,2-1)
ky(0,2-1) (0, %-1) ky(1,5-1) (1, %-1) ko(5-1,5-1) | b(5-1,§-1)
mp(0,0) n(0,0) mp(1,0) np(1,0) my(5-1,0) np(5-1,0)
kb(070) lb(070) kb(l’o) lb(l’o) kb(%_lvo) lb(%_lvo)
mg(0, 1) ny(0, 2-1) my(1, 5-1) ng(1, 2-1) mg(%-1,%-1) | ny(%-1,%2-1)
kg (0, §-1) 14(0,%-1) ko (1,%-1) ly(1,2-1) ko(5-1,%-1) | 1,(%-1,%-1)
mgy(0,0) ng(0,0) mgy(1,0) ng(1,0) my(5-1,0) ng(§-1,0)
k4(0,0) 14(0,0) kg(1,0) ly(1,0) kg(5-1,0) ly(3-1,0)
m,(0, 2-1) n,.(0,2-1) m, (1, 2-1) n.(1,2-1) m(Y-1,5-1) [n,(%-1,5-1)
k(0 §-1) 1:(0,5-1) k(1 5-1) I(1,5-1) kr(5-1,%-1) | L(5-1,%-1)
m,(0,1) n,(0,1) my(1,1) ny(1,1) m,(§-1,1) ne(5-1,1)
% (0,1) 1,(0,1) Ee(1,1) 1.(1,1) ko (2-1,1) 1(2-1,1)
m.(0,0) n,(0,0) my(1,0) n,(1,0) m,(§-1,0) ny(5-1,0)
%-(0,0) 1,(0,0) %.(1,0) 1,(1,0) % (2-1,0) 1.(2-1,0)

Table 1: Conversion Matrix between the internal mask foramat the input image.

A very important observation on the data formats and stoleagss is that neighbouring pixels in the
input image correspond to pixels in the internal mask forwitt equal relative texture coordinates only
when they belong to the samex2 2 pixel block. Such block is shown in table (1) (light grey ded
cells), with the relative texture coordinates for each datiaset beind1,1). Neighbouring pixel blocks
are assigned indices as defined on the left figure:

it |t mng [m n [m,n,
r kﬂi Iﬂ k(: Il kﬁl’i I"

m, 'n, m; 'n,

il - | e
bl | b lbr 1y 1, M
khl‘ Ib| kb‘ Ib kbﬁ I br

4 GPU-based Implementation 21

45.1 Center Area

Based on the decision rule set in equation (28)is computed as follows:
M = 2-vp(g=c)+ vc(gi=c)

Sincevp(g;=c) represents the number of pixels/im-direction with a 'changed’ label (pixel value=1),
this term can be simplified to the summation of all pixels:indir. The same rule applies t@-(g;=c)
and thus yields

T ST S
i € (hv—dir.) j € (diag—dir.)

wherebyc; is the color value (0 or 1) of a neighbour pixelin-direction, and:; is the color value of a
neighbour indiag-direction. Considering an output pixel in the center arka subset:, denoted ag;,
the correspondingv-neighbours aré;, m;, [;, andmy, whereas théiag-neighbours arey, n;, n,, and
ny. Thus,c; andc; are derived as

Z ¢ = lp+m;+ 1 +my,
1 € (hv—dir.)

E ¢ = np+n;+ny+ ngy.
j € (diag—dir.)

Now M is computed by

M, = 2-(ll—|—mz~+li+mb)+(nl+ni+nb+nbl)
= 2-(ll—i—li)—l—Q-(mi—i—mb)—i—(nl—l—ni—i—nb—i—nbl)
~——
a b c

Without further optimization the above step would requireeure lookups. Due to the fact that
pixels of the same subset in neighbouring pixel blocks aseedtas direct neighbours in the internal
mask format, i.e. their texture coordinates have a chesslulistance of 1, we make use of the hardware
accelerated bilinear texture interpolation (see sectih 8ence, the summation termash, andc can be
simplified by applying the following texture lookups (therklgrey box represents the texel, which will
be interpolated by the graphics hardware):

a b c

Thea-term linearly interpolates between the pixeandi;. We denote this interpolatiofy(—0.5, 0),
which is equal to the texture lookupz(7,) = tex(u—0.5,v 4 0+ h/8) within the internal mask format
w.r.t. a considered pixel's coordinatés, v). In the same way th&-term results inn4(0, —0.5) and the
c-term yieldsny(—0.5, —0.5). The interpolated texture lookups of the 3 terms returnrozdtues

1
val, = ld(—0.5,0) = §(ll + li),
1
valy, = md(oa —05) = §(mz + mb)>

1
vale = ng(—0.5,-0.5) = Z(nl + n; + np + npp)-

4 GPU-based Implementation 22

It turns out that the quantitative relation between the Beis already correct, but just the absolute scale
has to be adapted. Thus, applying a global scale factor afdslo

Mp = 4-(2a+2b+c)
= 4 (valy, + valy 4 val,)
= 4-(lq(=0.5,0) + mg(0,—0.5) + ny(—0.5,—-0.5))
By utilizing the bilinear texture interpolation, we havewoeduced the number of texture lookups
from 8 to only 3. Indeed, this method increases processirnigmeance distinctively. When repeating

the above steps for the remaining subgets, andn, we can summarize the computationaf for the
center-area:

a b c
M, = 4. (ld(—0.5, 0) + mg(0, —0.5) 4+ ng(—0.5, —0.5)) #
a b c ’
M, = 4. kd(0.5,0)+md(0.5,0.5)+nd(0,0.5)>
(a b c +: !
M,, = 4 | k4(0,0.5) +14(—0.5,0.5) 4+ ng(—0.5,0) i #
— ; : | |
M, = 4-(kd(0.5,0.5)+ld(0,0.5)+md(0.570)> i i #

4.5.2 Top Area

When looking at the topmost row of a subset in the internalkni@asnat, we observe that direct pixel
neighbours do not necessarily reside in the same color ehalRar instance, considering an element
in the red color channel of the subsetat locationm,.(1, h/8—1). This element corresponds to an output
pixel at location(2, h/4 — 1), as can be seen in table (1). The upper neighbour of this piggls to an
elementk;, which belongs to the subskbut relies in the green color channel. Moreover, the neighibo
v-coordinate within the second storage level is not incrédisel as expected, but decreasedhbg — 1
based on the coordinate origin of the subset
The same observation can be made on an elemgat locationn,.(1,2/8 — 1) in the red color
channel, which has an upper neighbguat locationl, (1, 0) in the green color channel of the sub&et
We summarize the observations:

e Elementsn; andn; in the red color channel have their upper neighbours in teergcolor channel,
elementsn; andn; in the green color channel have their upper neighbours ihltreecolor channel,
elementsn; andn; in the blue color channel have their upper neighbours inlgitesacolor channel.

e Elementsn; andn; in the alpha color channel have no direct upper neighbogedimey belong to
the image border. Therefore only their values itself areluaich is equal to having a background
neighbour.

e Upper neighbours of elements; andn; have coordinategu, 0) and thus belong to thettom-
area of the considered subset.

4 GPU-based Implementation 23

The computation of\/ for the element& and! is equal to the center area, thus

My = 4-(1g(=0.5,0) + mg(0, —0.5) + ng(—0.5,-0.5)) ,
M; = 4-(kg(0.5,0) + mg(0.5,—0.5) + ng(0,—0.5)) .

For an elementn we basically get

My = 2-(ki+k)+2-(mi+n)+{u+L+0L+10).
—— ——

M7n,k’]\/jm,n]\/jm,l

Since processing is done on all 4 color channels in paralielcan separat&/,,, ;, into 4 parts:

m,k,r
Mm,k,g
M kb
Mm,k,a

Mm,k =

When looking at the red color channié,), ;. we can formulate

h
Mm,k,r - kd,r(07 O) + kd,g(oy l_g)v

which describes the sum of the current pixel block’s elemigntthe red channel and the upper neighbour
k in the green color channel with a relativeoffset of (1 — 2 /8). The green and blue channels are equally
specified:

h
Mm,k‘,g = k/’d’g(o, 0) + kd7b(0, 175)’

h
My rp = kq,a(0,0) + kg4 (0, 175).

Since an element: in the alpha color channel belongs to the image’s borderlindoes not have any
upper neighbour and thus yields

Mm,k,a = kd,a(ovo)-

Combining the above formulas results in

h
+ kq(0, 1—5).gbar .

3

ks

Il

™

QU

—

L

=]

~—
— ==
O ===

This notation means that from the right summation term we 4 the color channels in the sequence
g,b,r,a instead ofr, g, b, a, as it would the general case. Such a 'swizzle’- operatovadable on the
GPU without time penalty. Any kinds of mixtures are possilliso reading out multiple times the same
color channel. The vectdi, 1,1,0)” denotes the multiplication of the red, green and blue chaitle

1 and the alpha channel with 0. Clearly, we only take the finghoels into account while ignoring the
alpha value. For simplification we rewrite

)

h
Mmk = kd(070)+kd(071_§)gba07

4 GPU-based Implementation 24

which combines the vector multiplication with the swizglperator. Thé in this new operator repre-
sents no color value at all and thus only the color chanpélsa of k4(0, L%) are added to the channels
r,9,b of k4(0,0). The result is written into the, g, b channels of),, 1, whereas in the channel only
the valuek;(0, 0) is present.

Compared with thé: and/ elements, we now require two texture lookups instead ofgunst How-
ever, since the top-area only consistawgR elements, the time penalty is rather small and thus nedgigib

The computation ofiZ,,, ; is quite similar to the above, with the only difference tha meed to sum
two elements in each color channel. Clearly, the térm [; can be replaced by an interpolated texture
lookup 14(—0.5,0) within the same color channel while the teimp+ [, can be replaced by a lookup
1q(—0.5, 1—%) in the next color channel. Notice that each interpolated&upomust be multiplied with a
scale factor of 2 in order to retrieve the correct sum. Thusonmaulate

My = 2-143(—0.5,0) + 2 14(—0.5, 1—%).9()@0.
By again utilizing linear interpolation, the teri,, ,, is derived:
Mpn = 2-ng(—0.5,0).
Combining all three partd/,,, 1., M,,. , andM,, ; we rewrite
M, = 2 -Myug+2- My,+ My,

M
= 2. <Mm,k + Mm,n + TmJ>

h h
= 2. (k:d(o, 0) + ka(0, 1-5).gbal + 2 - ng(~0.5,0) + 14(~0.5,0) +La(~0.5, l—g).gba0>

+ ng(—0.5,0) +

2

L (kd(o, 0) + ka(0,1-2).gba0
2

14(—0.5,0) + 14(—0.5, 1%).9()@0)

Finally we summarize the computation bf for the top area
M, = 4-(14(=0.5,0) + mg(0,—0.5) + ng(—0.5, —0.5))

M, = 4-(kg(0.5,0) + mg(0.5,—0.5) + ng(0, —0.5))

+ ng(—0.5,0) +

2

h
v 4.(kd(0,0)+kd(0,1—§).gba0 2

14(—0.5,0) + I4(—0.5, 1—%).96@0)

M, = +ma(0.5,0) +

" (zd(o,o) +14(0,1-1).gba0
2

kq(0.5,0) + kq(0.5, 1_g)gbao>

4.5.3 Bottom Area

For the computation o in the bottom area, the same rules can be applied. The ofigratliice is that
instead of elements:, andn, now the elements and/ need special treatment w.r.t. texture coordinates.
The lower neighbour of an elemehtat positionk,(u, 0) in the alpha color channel is an elementat
positionm;(u, h/8 — 1) in the blue color channel. Elements in the red color chanoeial have a direct
lower neighbour, because they belong to the image borders, Bimilar to the top area, only the element
itself is taken into account.

4 GPU-based Implementation 25

For the bottom area we can formulate:

ma(0,0) 4+ mg(0, 2-1).0rgb ng(=0.5,0) 4+ ng(—0.5, 2-1).0rgb
0,0) +ng(0,2-1).0rgb 0.5,0) + 0.5, 2-1).0rgb
l 4. (nd() ndQ(g-1).0rg ka(0.5,0) ma() m;l(s—1).0rg)

My = 4-(kg(0,0.5) 4 Ig(—0.5,0.5) + ng(—0.5,0))

M, = 4-(kq(0.5,0.5) + 14(0,0.5) + mg(0.5,0))

4.5.4 Shader Programs

From the implementation point of view we have to decide homyrertex- and Fragment Shader pro-
grams we need in order to computé. A straightforward solution would be to implement 12 diéfat
Vertex- and also 12 Fragment Programs (4 subsets, each isomg@ areas). However, when removing
redundancy we can reduce the required number of Vertex ®to 8 and for Fragment Programs to
just 3. The underlying methodology is described in the nertparagraphs.

Vertex Programs (VP). A Vertex Program is executed for each drawn verte, initidig OpenGL or
DirectX commands. For instance, a rectangle is fully defibgdts 4 corner vertices. Each vertex can
have attributes, whereas its texture coordinates are aith@ngnost important ones for our application.
After applying some manipulation, i.e. 3D-transformasiptexture coordinate generation, and 3D-2D-
transformation, the output of the program is sent to a rasteunit on the graphics hardware. The
resulting fragment, i.e. the drawn rectangle, is sent toRtegment Shader units, whereby a Fragment
Program is executed for each pixel covered by the consideagthent. Texture coordinates as well as
pixel coordinates are linearly interpolated by the GPU.

When looking at the different/-formulations in the previous sections, we can observeliegiexture
coordinates forM/,, in the center area are equal to thoseliip in the top area. Thus, both parts can be
merged together into one Vertex Program. The followingddists all required Vertex Programs in the 4
subsets and the 3 areas.

k | m n
top VP1 | VP2 | VP5 | VP6

center | VP1 | VP2 | VP3| VP4

bottom | VP7 | VP8 | VP3| VP4

Fragment Programs (FP). A Fragment Program is executed for each rastered pixel edvey the
considered fragment. It fetches texels from differentusd, performs some computation and outputs a
final color, i.e. the valué/.

For the computation of\/ within the center area we observe that all 4 subsets undegeame
processing, which is basically the summation of 3 interfgalaexture values. The differences in the
texture coordinates are of no importance, since they araatkfivithin the Vertex Programs. The same
Fragment Program can be applieditf. and M, in the top area and to/,,, and M, in the bottom area.
The remaining parts require each 5 texture lookups but Isecaidifferent swizzle-operators, only those
within the same processing area can be combined. This yietdfollowing list of required Fragment
Programs.

top | FP1| FP1| FP2| FP2
center | FP1| FP1| FP1| FP1
bottom | FP3| FP3| FP1| FP1

4 GPU-based Implementation 26

4.6 TheSegConvert-Shader

After the iterative MRF-computation, the internal changasknhas to be backtransformed into a 1st
storage level format, suitable for further processing. d¢éethis last Shader converts the internal change
mask into an RGB buffer, having the same dimensions as thé inpage, with white foreground and
black background regions.

The Fragment Shader is executed for each considered oxgltrainging from(0,0) to (w—1, h—1),
wherebyw is the width andh the height of the input image. Table (1) in section 4.4 libts pixel cor-
respondences between each output pixel in the 1st storagje Tdhne dark grey boxes indicate the output
pixel position. Elements of the 4 input data subsets m, andn are arranged in a 2 2 block (light
grey block in the table), as described in section 4.4.

The Shader’s task w.r.t. an output pixel is to fetch the cuoldue from the internal mask format at
the position corresponding to the current pixel, as listethble (1), and transfer it to the output buffer.
Although this processing step is rather simple, the implaateon is somewhat tricky, since the input
pixel coordinates for each consecutive output pixels diffélearly, the input texel for an output pixel
location (2, 2) is k,-(1,1). Based on the internal mask format (second storage leh&)refers to a tex-
ture coordinate off, = (1,1) in the red color channet, of the subsetk. Thus, the output color is
out = tex(T.) = tex(1,1). The neighbouring output pixel at positigs, 2) refers to an input texel with
coordinateq 1, 1) in the subset, which has absolute texture coordinaés= (1,1 + %) based on the
internal mask format. The texture coordinates for an outpxel at location(2, 3) areT, = (1,1 + %)
and for location3, 3) they are7, = (1,1 + %). We can observe that only thecoordinate of the input
texel varies within a 2« 2 block of the output buffer.

We store the 4 different-offsets in a 2x 2 texture and activate the REPEAT-mode of the texture
lookup. This mode ensures that when accessing a texel atgomogi, v), the texture coordinates are
converted intdl; ,epeatr = (u mod 2,v mod 2).

(0.%) | (0.3

Now the flow of operation can be designed w.r.t. an outputl pecation (u, v):
1. Fetch the v-offset from the 2 2 texture in REPEAT-mode,
2. Compute the texture coordinate for the input texel by= (L%J, 5] + texoffs(Tc7repeat)),

3. Fetch the input texel and transfer it to the output buffer.

5 User’s Guide 27

5 User's Guide

This section gives a detailed description of the distridgeftware package, providing GPU-based foreground-
background segmentation. The specific requirements aeel lzs well as the delivered files, and imple-
mentation details on the public methods of the core libréagscare given.

The software package includes the core library and an exaprpgram demonstrating the usage of
the former. Our prototype runs under Linux operating sysaeioh supports the latest NVidia cards, such
as the GeForce 6 series. The Vertex- and Fragment Shadensitiem in Cg with OpenGL bindings.
Access to the core library is handled in a thread-safe way) gwat multi-threading is supported.

5.1 Requirements

Hardware Requirements. In order to run the provided segmentation algorithm on th&Re fol-
lowing hardware-specifications must be reached:

e OpenGL NV30 fragment profile is needed supporting pack/ckybanctions.

e Principally, there is no preferable manufacturer. In gahétvidia’s GPU’s have more accurate bi-
linear interpolation facilities, while ATI's processorsraetimes provide a faster memory interface
as a result of higher clock-rates.

e The graphics unit must support rectangular textures withpmwer-of-two size in each direction
as well as the PBuffer extension.

For our prototype we used NVidia's GeForce 6800GT card wWitB\2B onboard texture memory.

Software Requirements. The following software specification must be met on the etiegicomputer:

e While the PBuffer implementation supports multiple opiegtsystems, our prototype software
was written for Linux only. However, porting to Windows or klatosh systems should be possible
without loss of functionality.

e In order to run the application, at least an OpenGL contexdtrba created, as can be seen in the
example-application delivered with the library. Any kinfitoolkit providing an OpenGL interface
may be suitable, i.e. glut, Qt, gtk.

e OpenGL must be installed on the system with the drivers fegitaphics board providing the latest
OpenGL extensions supported.

e Cg (C for graphics), downloadable from the NVidia's websitée released version does directly
effect the runtime, since later compiler support newer Wwarée capabilities and therefore produces
more suitable assembler code. For our prototype, rele@dea%.been used.

Image requirements. Some restrictions on the input images are imposed as fallows

e The height must be a factor of 8, but at least 16 pixels. Thisctly results from our internal
mask format, which divides the height into 4 equally sizelosstis with height/8 and depth=4Byte.
The MRF-Iter-Shader requires at least one pixel in the top-area and ceéipithe bottom-area.
Since the center area is not necessarily used, a minimumigéB jin each subset is required, thus
yielding a minimum height of 16 pixels.

e The width must be a factor of 2. Again, this directly resuftani the internal mask format, which
has half the width of the input image.

5 User’s Guide 28

Memory Usage. The amount of required texture memory on the graphic car@émtdpon the size of
the input images. Based on the widthand heighth, the following table lists all textures used and gives
an overview of the memory consumption.

Internal Description width | height | depth
Name [px] | [px] | [Byte]
texAvg Average background image w h 3
texSrc Input (foreground) image w h 3
texSeg Segmentation output w h 3
texSegint Internal Mask Format w/2 h/2 4
texNormsFC Storing fore andcross, later M,,,;n w h 4
texNormsB Storingback w h 4
texConvert v-offset matrix, used for th8egConverShader 2 2 1

The overall texture memory required can thus be calculaged b
TexMem = 18- -w-h+ 4,
which leads to approx. 5.5MBytes for input images of size>6480 pixels.

5.2 Distributed files
The distributed segmentation package includes the fatig\iles:

A b/
CMakelLists.txt CMakelLists.txt
main.cpp allshaders dnclude.h
norms.cg libgpuseg.h
segment.cg libgpuseg.cpp
segconvert.cg pbuffer.h
imgSrc.png pbuffer.cpp
imgAvg.png
imgSeg.png

In the toplevel directory, the different Shaders (Verted &magment) are implemented in thay -
files, whereby imorms.cg theNormCale, NormMixBack, andNormConvertShaders reside. The iter-
ative MRF-computation, splitinto 8 Vertex- and 3 Fragmema&ers, is implemented in tsegment.cg
file. segconvert.cg holds the implementation of tigegConverShader. The examplaain.cpp -
file demonstrates the usage of the segmentation librarysiydiading an average input imagagAvg.png)
and an actual source imagen@Src.png), performing the segmentation and finally writing the oatpu
into animgSeg.png file. The example is compiled using CMake, whereasGhakelL.ists.txt
lists all dependencies and header files required. The dwayiis found under thi#b -subdirectory and
must be compiled separately, again by using CMake. The id¢idas of the core segmentation reside in
libgpuseg.h and the implementation can be foundilbgpuseg.cpp

Two ways of linking the Shader code are provided:

1. Dynamically compiling the Shader filesdrms.cg ,segment.cg ,andsegconvert.cg),
2. Statically compiling the Shader code by including thedilshaders _include.h

The dynamic linkage obviously has the advantage of onldeptations to the Shader program without
the necessity of recompiling the library itself. Each tirhe tibrary code is executed, it reads the Shader
files, compiles them by sending them to the Cg-compiler, aegges the returned assembler code on

5 User’s Guide 29

the GPU. However, it is important to mention that the Shadies fnust be in the executable search path,
i.e. in the same directory as the example application. Adtvely, a static linkage is providing a pseudo-
compile-time version, which includes tlaishaders _include.h file. In this header file, the same
Shader listing as in the Shader files can be found, but nowreessito different string variables. These
strings are compiled at runtime, but of course the librarytoebe rebuilt after modifications. Pathnames
are no longer of importance in the static version. Switchiatyveen the dynamic and the static version
is done by changing the 3rd codeline in thmypuseg.cpp file:

#define DYNAMIC_CGFILES

The filespbuffer.n andpbuffer.cpp provide code for the PBuffer implementation, executable
under Linux/Unix, Windows and Macintosh operating systems

5.3 Library class description

The core library is implemented in tHdgpuseg.h and libgpuseg.cpp files under thdib -

subdirectory. It contains all code initializing the GPUeating the textures and PBuffers, setting and

modifying the parameter sets, performing the segmentgtimviding methods for accessing the resulting

segmentation texture, and finally safely cleaning up thervesi memory and instanciated data structures.
In the remaining section the following public methods arsadibed in detail:

class CGpuSeg Base
CGpuSeg_Base();
"CGpuSeg_Base();
int init(int w, int h, bool bPrintDebug=false);
int set_background(unsigned char * imgBG, int depth=3);
int set_foreground(unsigned char * imgFG, int depth=3);
int segment(bool bWaitFinished);
int segment(unsigned char * ImgFG, bool bWaitFinished, int depth=3);
int get_segmentation(unsigned char * imgSeg, int depth=1);

void set_Bl(float B1_);

void set B2(float B2);

void set Ts(float Ts);

void set_Odc(float Odc_);

void set_ MRFiter(int MRFiter_);

void set_Params(float B1_, float B2 , float Ts_, float Odc_ ,
int MRFiter);

float get B1();

float get B2();

float get _Ts();

float get_Odc();

int get MRFiter();

void get_Params(float &B1_, float &B2_, float &Ts_, float & Odc_,
int &MRFiter);

int get_width();

int get_height();

GLuint get_SegTex();

Functions declared as thread-safe first acquire a classiaitpthread-mutex before executing the
requested code and finally releasing the same mutex.

5 User’s Guide 30

CGpuSegBase(): The constructor of the class creates a pthread-mutex, valimhs a thread-safe
access to all important internal functions.

~CGpuSegBase(): The destructor cleans up the reserved memory by deletingethéred texture
memory, the OpenGL display lists, the PBuffers, the Cg-faotg, and the pthread-mutex. This function
is thread-safe.

int init(

int w, int h, bool bPrintDebug=false): Before the segmentation can be used, the class
instance must be initialized by defining the widttand heighth of the working images under consid-
eration of the limitations given in section 5.1. Afterwartise Cg-programs are read and compiled, the
current existing OpenGL context initialized, the textucesated, some useful OpenGL display lists de-
fined, and finally the PBuffers created and initialized. Wlies parametebPrintDebug is set to
true , the assembly listing of the Shader programs is output. Agadlinitialized class instance may be
re-initialized. The function is thread-safe and returnm-¢ase of any error or 1 otherwise.

int set _background(

unsigned char * imgBG, int depth=3): With this method a new background image can be
uyploaded, defined by the data bufiengBG. The image must be of RGB-typedpth=3) with an
optional alpha-channetlépth=4). The image’s origin is on the top-left corner and pixels staed in

a row-wise manner. Each time a new background image is seintirnal working mask is cleared and
the first segmentation run takes care of one-time computguch as theack qualifiers. The function

is thread-safe and returns -1 in case of any error or 1 otlserwi

int set _foreground(

unsigned char * imgFG, int depth=3): A new source image is provided to the class in-
stance through this method, whereby the same rules for thgdndata as for the background image
apply. The function is thread-safe and returns -1 in caseypgfaror or 1 otherwise.

int segment(

bool bWaitFinished): This method initiates a foreground-background segmemabased on
the current source image and the average background imagecomputation is split into 3 parts, each
operating on a PBuffer object. Care has been taken for fuopeovements on floating point PBuffers
by separating the PBuffers into one storing the image qesdifithis could be a float-buffer in future
versions) and another storing the internal mask format.icddhat in case of two different PBuffer
objects, a context switch has to occur, which might slow dtdvenoverall performance. If the parameter
bWaitFinished s settrue , the function returns only when the GPU has finished the coatipns.
This is only useful when the user’s application requireswkrdge about ready-to-operate GPU. The
function is thread-safe and returns -1 in case of any erraratherwise.

int segment(

unsigned char * imgFG, bool bWaitFinished, int depth=3): This method combines
the functionsset_foreground andsegment by first setting the foreground image and then perform-
ing the segmentation. The function is thread-safe andmetdrin case of any error or 1 otherwise.

int get _segmentation(

unsigned char * imgSeg, int depth=1): In case the final segmentation result is not needed
for further compuations on the GPU, the binary segmentatitage might be downloaded to a buffer,
pointed to byimgSeg . The buffer memory must already be allocated on beforehaddcan have a

5 User’s Guide 31

pixel-depth of 4 Bytes (RGBA), 3 Bytes (RGB) or 1 Byte, wherahe latter is the fastest one. Fore-
ground regions are assigned a color value of 255 and baakdroegions have value 0. The readout
of the texture memory, storing the segmentation, ensuedsathprevious OpenGL commands have fin-
ished and thus the internal instruction pipeline is emptiétkarly, when running the segmentation, the
flag bWaitFinished must not be set in case tlget_segmentation is called successively. The
function is thread-safe and returns -1 in case of any erra@ratherwise.

void set _B1(

float B1 _): This method modifies the compactness valBief the first parameter set. Typical
values range betweehand3. The higherB; is, the lower the trigger level for a pixel is to be assigned
a foreground segment, dependent on the local neighbourh®imate the first parameter set is used for
solving compactness in consecutive image framésyalue too high might result in a temporal smearing
effect of foreground regions. The function is thread-safe.

void set _B2(

float B2 _): This method modifies the compactness vaRi®f the second parameter set. Typi-
cal values range betwedif0 and 700, dependent on the image contrast. Higher values result e mo
compact regions and thus smoother foreground areas. Thedurns thread-safe.

void set _Ts(

float Ts _): This method modifies the static threshold of both parametes. dn practice, lower
values result in highly cluttered foreground regions, velasrhigher values might not detect foreground
correctly. However, small outliers in the first segmentat&we eliminated by the initial run on the first
parameter set, whereas occluded foreground is usuallgridendled by taking darkness compensation
into account as well as the iterative compactness compuotasing the second parameter set. Typical
values range betweéi) and500. The function is thread-safe.

void set _Odc(

float Odc): This method writes the darkness offset of both parametsr stgher values benefit
better segmentations on areas with dark foreground anbttragkground. Typical values range between
1000 and30000. The function is thread-safe.

void set _MRFiter(

int MRFiter). This method modifies the number of iterations during the MieRputation. Higher
values result in smoother and more compact segmentationgke more computation time. Typical val-
ues range betweehand8. The function is thread-safe.

void set _Params(
float B1 _, float B2 _, float Ts _, float Odc _, int MRFiter J): This method com-
bines the above functions by setting both parameter setscat dhe function is thread-safe.

float get _B1(): This thread-safe function returns the currently set cortmaess value for the first
parameter set.

float get _B2(): This thread-safe function returns the currently set corimess value for the sec-
ond parameter set.

float get _Ts(): This thread-safe function returns the currently set statieshold value.

5 User’s Guide 32

float get _Odc(): This thread-safe function returns the currently set daskmdfset.
int get _MRFiter(): This thread-safe function returns the currently set nurnbBIRF-iterations.

void get _Params(
float &B1 _, float &B2 _, float &Ts _, float &0dc _, int &MRFiter). Thisthread-
safe function reads both parameter sets at once and steresstlit in the submitted reference variables.

int get _width(): This thread-safe function returns the currently set widttmne working images.
int get _height(): This thread-safe function returns the currently set heighibe working im-
ages.

GLuint get _SegTex(): The segmentation result resides in a texture memory on #pgs hard-

ware. In order to allow further GPU-applications to opeiatehis segmentation, the corresponding tex-
ture identifier is required, which can be retrieved by thisclion. Notice that the texture is only valid
during lifetime of the class instance. The function is tlrsafe.

5.4 Example Program

The following example program in pseudo-code demonstitedsage of the core library:

Create_OpenGL_Context // QtGL, gtk, glut
CGpuSeg_Base *pSeg = new CGpuSeg_Base();
imgBG = Load_Background_RGBImage;

pSeg -> init(width,height);

pSeg -> set_background(imgAvg);

pSeg -> set Params(...);

imgFG = Load_Foreground_RGBImage;

pSeg -> segment(imgFG, false);

if (Further_GPU_Applications)
SegTex_id = pSeg -> get_SegTex();
Execute_Further_GPU_Applications

if (Store_Segmentation)
imgSeg = Create_Empty_Buffer
pSeg -> get_segmentation(&imgSeq);

delete pSeg;
Destroy_OpenGL_Context

First an OpenGL drawing context has to be created, in caseis@iready defined. Then, after creat-
ing an instance of the segmentator class, it is initializét whe width and height of the current working
images. The loaded background image is transfered to thedbBthe parameter sets are defined after-
wards. On each newly loaded source image the segmentati@anfamed. If further GPU applications
operate on the segmentation result, successive Open@udtishs may be sent to the graphics hardware
without explicitely waiting for the GPU finished all previesccommands. The OpenGL state-machine
guarantees that the texture memory is only read when previoite operations successively completed.
Additionally, the segmentation result could be stored iredicated buffer by reading out the texture
buffer.

6 Results 33

6 Results

The impact of the number of iterations during the MRF comipotato the segmentation result is shown
in figure 9, whereby the prior frame is completely black. Wiihiterating at all, some outliers are
detected, depending on the threshold level. With incrgasumber of iterations the segmented regions
become more smooth and compact and isolated small foregjmnels are turned into background. The
parameters used aile = 310, O4. = 5800, By = 2, and By = 200. We observed that robustness of
segmentation wrt. the static threshold is increased waghMRF iterations.

& SIF SF SF S

Figure 9: Segmentation result with different number ofatems;=0,2,4,6 (from left to right) during the
MRF-computation.

As the algorithm is mainly designed for indoor application® recorded some image sequences in
our 3D-scanning setup (s€&0]). Accounting for motion blur elimination and thus forcirmn exposure
times, the grabbed images suffer from very low contrast agld image noise. Therefore darkness com-
pensation is essential for acceptable segmentations bedioteground object and the background are
nearly similar in luminance. Figure 10 demonstrates theomgmce of darkness compensation. All three
segmentations use the same parameter set. The fourth isilgeriesult of an optimized CPU-version
of the segmentation without MRF-iterations, that is dadeneompensation added to the algorithm of
Mester. Additionally we tested the algorithm in outdoor iesnments (see figure 11) and still get good
results.

To our knowledge, our GPU-based implementation outpeoamy other existing image segmen-
tation wrt. runtime. Table (2) summarizes the measuredntisiidependent on the number of MRF-
iterations. The first two columns are based on images of slPx512, whereas the rest operates on
640x 480 images. The following cases are distinguished:

Figure 10: From left to right: BG-image, FG-image, segmeotawithout darkness compensation (d.c.),
CPU-based segmentation with MRF and d.c., GPU-basedivtersegmentation with MRF, d.c. and 8
iterations.

6 Results 34

Ti000,ext 1S the average runtime of 1000 segmentations without chartie source image. Since
each segmentation is performed without explicitely waitfar the result, the internal
instruction pipeline of the GPU is always filled. Thus, thisde simulates the usage
of our algorithm in combination with GPU-based post-preess Theeat-index de-
notes the measurment including the thread-safe mutexslacl -unlocks as well as the
PBuffer-context-switches.

Ti000,int 1S Similar to the above, except the time is measured witheeitniutex-operations and
without the PBuffer-context-switches. Indeed, this siates$ the usage of our algorithm
in combination with post-processing GPU-based applioatiaising the same PBuffer.
It turns out that a context-switch typically takes about4€0

T ez is the time needed for one segmentation run excluding theadplime for the source
image. Due to the fact that the internal pipeline of the GPhbisonger optimally filled
because the segmentation is performed witMaitFinished=true , these times are
slightly larger than in the above pipelined cases.

T ezt up @gain is the time needed for one segmentation run, but ndwding the image upload.
Indeed, this time is highly dependent on the operating systed the graphics hardware
driver used.

T ext,up+an Measures the time needed for one segmentation run incluciiage upload and the
segmentation result download \get _segmentation . Again, this time strongly de-
pends on the operating system and the drivers used.

iter | T1000,cxt ‘ T1000,int T1000,ext ‘ T1000,int ‘ T} ext ‘ T extup ‘ T ot uptdn
640x512 640x480
0 2.92 2.88 2.54 2.51 3.01 4.8 6.2
1 3.15 3.10 2.78 2.75 3.25 5.1 6.4
2 3.37 3.33 3.01 2.97 3.50 5.3 6.6
3 3.62 3.57 3.24 3.20 3.73 5.5 6.8
4 3.82 3.76 3.48 3.44 3.94 5.7 7.0
5 4.04 3.99 3.71 3.67 4.2 6.0 7.2
6 4.26 4.21 3.94 3.89 4.4 6.2 7.4
8 4.69 4.66 441 4.38 4.82 6.6 7.9
10 5.16 5.11 4.87 4.84 5.33 7.1 8.3

Table 2: Time measurements for the GPU-based segmentationtihe number of MRF-iterations. The
results are given ims.

6 Results 35

Figure 11: Segmentation results in indoor and outdoor enwitents. From left to right: BG-image, FG-
image, Segmentation usind darkness compensation and 8 MRi¥Eians on the GPU. Processing time
for each image is approx. 3ms

References 36

References

[1]

[2]

[3]

[4]

[5]

(6]

[7]

(8]

[9]

[10]

[11]

[12]

R. Mester, T. Aach, L. Dumbgen, “lllumination-Invarianh@nge Detection Using a Statistical Co-
linearity Criterion”, Proc. 23rd DAGM Symp2001.

T. Aach, A. Kaup, “Bayesian algorithms for adaptive changeedtion in image sequences using
Markov random fields’Signal Processing: Image Communication 7(@995.

T. Aach, A. Kaup, R. Mester, “Change detection in image segeg using Gibbs random fields”,
IEEE Int. Workshop Intell. Signal Processing Com. S§893.

C. Stauffer, W.E.L. Grimson, “Adaptive Background Mixtukéodels for Real-Time Tracking”,
Proc. CVPR 1999.

N. Friedman, S. Russell, “Image Segmentation in Video Secge a Probabilistic Approach”,
Proc. 13th Conf. on Uncertainty in Artificial Intelligenc&997.

R. J. Radkeet al,, “Image Change Detection Algorithms: A Systematic Surydyiage Processing
14 (3), 2005.

R. Kehl, L. Van Gool, “Real-time Pointing Gesture Recogmitifor an Immersive Environment”,
Proc. 6th IEEE Intl. Conf. on Aut. Face and Gesture Rec2g04.

W. Matusik, C. Bueler, L. McMillan, “Polyhedral visual halfor real-time rendering’Proc. EGRW
2001.

M. Li, M. Magnor, H.-P. Seidel, “Hardware-Accelerated V@uHull Reconstruction and Render-
ing”, Graphics Interface2003.

A. Griesser, T.P. Koninckx, L. Van Gool, “Adaptive Real-183D Acquisition and Contour Track-
ing within a Multiple Structured Light SystemPBroc. 12th Pacific Graphics2004.

N. Cornelis, L. Van Gool, “Real-Time Connectivity Constrad Depth Map Computation Using
Programmable Graphics Hardwar@toc. CVPR 2005.

General-Purpose Computation Using Graphics Hardwaig/Mitvw.gpgpu.org.

