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Abstract

This report presents a GPU-based foreground-background segmentation that processes image se-
quences in less than 4ms per frame. Change detection wrt. thebackground is based on a color simi-
larity test in a small pixel neighbourhood, and is integrated into a Bayesian estimation framework. An
iterative MRF-based model is applied, exploiting parallelism on modern graphics hardware. Result-
ing segmentation exhibits compactness and smoothness in foreground areas as well as for inter-frame
temporal contiguity. Further refinements extend the colinearity criterion with compensation for dark
foreground and background areas and thus improving overallperformance.
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1 Introduction

Robust and accurate foreground-background segmentation is a relatively small but crucial step in several
computer vision applications. It is a key element in surveillance, 3D-modelling from silhouettes, motion
capture, or gesture analysis for human-computer interaction (HCI). For several of these - surveillance
and HCI are cases in point - real-time processing is crucial.Hence, for these applications, foreground-
background segmentation should be extremely fast, as the bulk of the computation time on the CPU has
to remain available for the subsequent stages of processingand interpretation.

As a result, the type of foreground-background segmentation that can be used on-line has typically
been kept as simple as possible, and has led to important constraints on the background. For instance,
in their semi on-line user modeling work, Matusiket al. [8] had to resort to a rather simple background
subtraction. On the other hand, more sophisticated algorithms are available today, like Bayesian pixel
classification based on time-adaptive, per-pixel mixture of Gaussians color model[4, 5]. A comprehensive
survey of image change detection algorithms is presented in[6]. Recently, Mesteret al. developed a color
similarity criterion[1], which has already performed well in our - offline - gesture recognition setup[7].
However, these sophisticated algorithms lack real-time performance.

Here we propose a GPU-based implementation of Mester’s approach, combined with some refine-
ments to further improve performance. Our implementation takes less than 4 milliseconds per frame
and frees the CPU from this preprocessing step altogether. Thus, our approach is especially useful for
algorithms already using the GPU in the further processing stages.

2 Mathematical Model

2.1 The Colinearity Criterion

Mester’s method compares the color values at pixels in a reference (background) image, and a given
image. In particular, all color values within a small windowaround a pixel, here always a3 × 3 neigh-
bourhood, are stacked into row vectorsxb resp.xf for the background resp. the given image, where the
latter will typically contain some additional foreground objects.

Under the null hypothesisH0 these vectors can be written asxb=s + ǫb andxf =k · s + ǫf , where
ǫb and ǫf are additive noise vectors ands is an unknown signal vector. Change detection amounts to

df

db
u

bx

xf

assessing whetherxb andxf are colinear. If they are (the null hypoth-
esisH0), no change is judged to be present and the background is still
visible at that pixel in the given image. If not, the pixels are considered
to have different colors, and a foreground pixel has been found.

Rather than testing for perfect colinearity, one has to allow for some
noise in the measurement process. Indeed, when Gaussian noise is
assumed, the unkown ’true signal’ direction (represented by the unit
vectoru) can be estimated by minimizing the sumD2= |db|2 + |df |2.

By defining
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[
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]
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(1)

with N pixels in the neighbourhood of the considered pixel, Mesteret al. [1] pointed out that the test
statisticD2 is identical to the smallest non-zero eigenvalue of the2 × 2 matrixXXT :

D2 = eig
(
XXT

)
= eig

[
fore cross
cross back

]

(2)
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with three image qualifiers defined as

fore := xf · xT
f

cross := xf · xT
b (3)

back := xb · xT
b .

Clearly, in a3 × 3 neighbourhood, the matrixX contains the color values (red, green and blue) of
N = 9 pixels in the foreground (indexed withf ) and background (indexed withb). Equation (2) amounts
to

0 =

∣
∣
∣
∣

fore− D2 cross
cross back − D2

∣
∣
∣
∣
. (4)

Mester [1] empirically showed thatD2 follows a χ2 probability density function with3(N − 1)
degrees of freedom and a proportionality factorσ2

u. Based on the knowledge of this distribution, the null
hypothesis test can be reduced to a significance test, whereby D2 is compared with a thresholdt through
Prob[D2 > t|H0]=α with the significance levelα.

2.2 Bayesian Estimation

A Bayesian analysis allows the above decision to be made on a principled basis. The result of this analysis
will be a foreground or ‘change mask’Q, found by maximizing its a-posteriori probability (MAP). The
binary change mask consists of pixels with labelsqi = u (unchanged, background) orqi = c (changed,
foreground). Based on the distance measurementD2, change labels are assigned following the decision
rule:

p(Qc|D2)

p(Qu|D2)

c
>
<
u

t.

A ’changed’ label is assigned to a pixel if the left term is greater than the thresholdt, otherwise it gets
’unchanged’ assigned to it. Using Bayes’ theorem we get

p(D2|Qc)

p(D2|Qu)

c
>
<
u

t · p(Qu)

p(Qc)
.

In order to calculate the fraction on the left side of the above equation, both conditional probability
density functions must be estimated. Within a local neighbourhood comprisingN pixels, both pdf’s are
modeled as zero-mean Gaussian distributions

p(D2|Qc) =

(
1

σc ·
√

2π

)N

· e−
D2

2σ2
c ,

p(D2|Qu) =

(
1

σu ·
√

2π

)N

· e−
D2

2σ2
u

with variancesσc andσu. As foreground areas typically exhibit color differences of large magnitude w.r.t.
the background, the varianceσ2

c is much larger than the varianceσ2
u caused by noise. Thus, the decision

rule can be rewritten to
(

σu

σc

)N

· e−
D2

2σ2
c
+ D2

2σ2
u

c
>
<
u

t · p(Qu)

p(Qc)
,

which is equal to

e
D2

2
·
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c−σ2
u

σ2
u·σ2

c

c
>
<
u

(
σc

σu

)N

· t · p(Qu)

p(Qc)
.



2 Mathematical Model 5

As σ2
c ≫ σ2

u, the sumσ2
c − σ2

u ≈ σ2
c and thus

e
D2

2σ2
u

c
>
<
u

(
σc

σu

)N

· t · p(Qu)

p(Qc)
.

ExtractingD2 yields

D2
c
>
<
u

2σ2
u · ln

((
σc

σu

)N

· t
)

︸ ︷︷ ︸

Ts

+ 2σ2
u · ln

(
p(Qu)

p(Qc)

)

︸ ︷︷ ︸

Tadapt

(5)

with a static thresholdTs and an adaptive thresholdTadapt.

2.3 Adaptive Threshold, MRF

Without any prior knowledge of the change mask, the adaptivethresholdTadapt in equation (5) is0 be-
cause both probabilitiesp(Qu) andp(Qc) would then be equal. This often results in scattered foreground
and background segments. To remedy this, one would like to bring spatio-temporal compactness con-
siderations into play. Indeed, foreground objects tend to cover larger and more compact regions. If the
object moves slowly compared to the framerate, this adds a temporal smoothness.

Such considerations are now added. A first element is the spatial compactness. A pixel should have
a higher chance of being considered foreground if several ofits neighbours have this status. This is a
bit of a chicken-and-egg problem, however, as this assumes we already have a mechanism to decide on
the neighbours first. In practice, this deadlock is solved bydesigning an iterative scheme. This will start
with all pixels as background during the first iteration for the first frame. After that, the results from the
previous iteration for that frame are used, or that of the last iteration of the previous frame in case a new
frame is started. Note that the latter choice pushes towardstemporal smoothness.

Still following Mester[1] and in order to bring the spatial compactness idea to bear, the change mask
is considered to be sampled from a two-dimensional Gibbs/Markov random field (MRF). Hereby the a
priori probability is expressed by

p(Q) =
1

Z
· e−E(Q) (6)

with a normalization constantZ and an energy-termE(Q). The smoother the boundary of the change
mask within the considered neighbourhood (windowW ), the lower the energy-termE(Q) is. Evaluating
the smoothness and compactness can be simplified to account for changes between pixel pairs only. A
pixel pair consists of two adjacent pixels in either horizontal, vertical or diagonal direction. Within any
neighbourhood region, two kinds of pixel pairs can be distinguished: those who comprise the currently
considered pixel, denoted aslocal pixel pairs, and all other pairs not comprising the current pixel, denoted
asglobal pixel pairs (see figures 1-a,b).

Hence, the energy-term can be split into a local and a global term:

E(Q) = EL(Q) + EG(Q). (7)

Based on a squared image grid, the 8 possible local pixel pairs within a 8-neighbourhood can be
divided into two groups: 4 pairs of horizontal/vertical pairs (hv-dir.) and 4 diagonal pairs (diag-dir.) (see
figures 1-c,d). Designating the number of adjacent pixels inhv direction asνB and indiag direction as
νC wrt. the labelqi, the local energy term can be rewritten as

EL(Q) = νB(qi) · B′ + νC(qi) · C ′, (8)

wherebyB′ andC ′ are constant multiplicative factors influencing the level of compactness. Thus, equa-
tion (7) is reformulated as

E(Q) = νB(qi) · B′ + νC(qi) · C ′ + EG(Q), (9)
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(a) Global Energy, global
pixel pairs

(b) Local Energy, local
pixel pairs

(c) Local pixel pairs inhv-
direction

(d) Local pixel pairs in
diag-direction

Figure 1: Local and global pixel connectivities.

Combining (9) with (6) and accounting for both labelsqi = c (changed) andqi = u (unchanged)
yields to

p(Qc) =
1

Z
· e−(νB(qi=c)·B′+νC(qi=c)·C′+EG(Qc)),

p(Qu) =
1

Z
· e−(νB(qi=u)·B′+νC(qi=u)·C′+EG(Qu)).

When inserting above formulas into equation (5), the adaptive threshold term is

Tadapt = 2σ2
u · ln

(
p(Qu)

p(Qc)

)

= 2σ2
u ·
[
(νB(qi=c) − νB(qi=u)) · B′ + (νC(qi=c) − νC(qi=u)) · C ′

]
. (10)

One can easily observe that

νB(qi=c) + νB(qi=u) = 4

νC(qi=c) + νC(qi=u) = 4.

By setting

C ′ = B′/2

and defining

B := σ2
u · B′

we can simplify equation (10) to

M := 2 · νB(qi=c) + νC(qi=c)

Tadapt = 12B − 2BM. (11)

Indeed, the lower the amount of foreground pixels in the surrounding change mask is (qi=c), the lower
M and therefore the higher the adaptive threshold gets, increasing the barrier at which a considered pixel
may be assigned to foreground. This intuitive behaviour results in smooth and compact regions, even in
small neighbourhoods, i.e.3 × 3 pixels.
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2.4 Darkness Compensation

Though an intensity-invariant method as Mester’s does provide robustness against shadows and lighting
changes, such invariance also has drawbacks. Often, part ofthe foreground or background will be dark,
i.e. close to black. As black can be seen as a low intensity version of any color, the current approach will
never trigger segmentation in those areas.

Our solution consists of adding an additional component to the vectorsxb andxf in eq. (1). This
additional component has a fixed value of

√
Odc. (The awkward use of the square-root has been opted

for as this simplifies further notation; e.g.fore, cross, and backof eq. (3) are now increased byOdc.)
This additional component renders the color similarity measure more sensitive to differences, esp. when
dark pixels are involved. Indeed, this additional component has the effect of lifting the3N -dimensional
ground plane in the enlarged3N + 1-space, to height

√
Odc, thereby distinguishing vectors that were

colinear but had different norms.
When running these new3N +1-dimensional vectors through the criterion, we come to the following

observations:

• The resulting distances never decrease (proof is straightforward), thus regions that were previously
segmented, remain segmented after the manipulation (for the same thresholdT ).

• The comparison of equal vectors remains unhampered (D2 is 0 in both approaches).

• Moreover,when‖xf‖ = ‖xb‖ (more or less equal intensities), there is no impact whatsoever on the
distance measure.

• Vectors that were previously colinear but of different sizes, will not remain colinear. The impact is
dependent on the difference in intensity.

• As Odc goes to infinity, the distance measure becomes(fore + back − 2 · cross)/2. This equals
‖xf − xb‖/2, which still yields a valid distance measure for backgroundsegmentation, but to-
tally lacks the illumination invariance property useful tocope with shadows. The choice ofOdc

determines how illumination sensitive the result is.

The above observations show that the provided manipulationnow correctly segments dark coloured
areas, compared with bright background. This was previously not the case, as these areas were seen as
noise on a0-vector. Furthermore, normal operation, where foregroundlooks like background or where
foreground was already segmented from the background without the extra compensation, is not impaired.

2.5 Final Decision Rule

We can now convert the final decision rule into a form, which issuitable for computation. First, the
determinant in equation (4) has to be solved involving a square root term, which is often a bottleneck in
high-speed implementations:

D2 =
1

2
·
(

fore + back −
√

(fore − back)2 + 4 · cross2
)

. (12)

Fortunately, the square root must not explicitely be calculated, butD2 directly compared to a threshold
T = Ts + Tadapt (see formula 5). Without loss of generality we rewrite the decision rule and get

D2 c
> T,

which assigns the ’changed’ label only when the above inequation is fulfilled. Applying this rule to (12)
results in

1

2
·
(

fore + back −
√

(fore − back)2 + 4 · cross2
)

c
> T,
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which is equal to

fore + back − 2T
c
>

√

(fore − back)2 + 4 · cross2.

Taking the square of both sides yields two inequalities

(fore + back − 2T )2
c
> (fore − back)2 + 4 · cross2

fore + back − 2T
c
> 0.

The former one can be further expanded:

fore · back − fore · T − back · T + T 2 c
> cross2

or in an even simpler form

(fore− T ) · (back − T )
c
> cross2.

Finally, the decision rule is reduced to testing the following two inequalities only:

(fore − T ) · (back − T )
c
> cross2

fore + back
c
> 2T.

The first inequality shows that eitherfore and back are both> T , or both< T , while additionally
considering the latter inequality forcesfore > T or back > T . Therefore we can again simplify the
above formulas:

(fore − T ) · (back − T )
c
> cross2

fore
c
> T.

As described in section 2.4, darkness compensation is integrated by addingOdc to each of the three
qualifiersfore, back andcross, which yields

(fore + Odc − T ) · (back + Odc − T )
c
> (cross + Odc)

2

fore + Odc
c
> T.

We define a new total threshold

Tt := T − Odc = Ts + Tadapt − Odc (13)

and rewrite the two inequalities:

(fore − Tt) · (back − Tt)
c
> (cross + Odc)

2

fore
c
> Tt.

Now, when also the adaptive threshold in equation (11) is integrated, the final decision rule set can be
formulated:

M = 2 · νB(qi=c) + νC(qi=c)

Tt = Ts + 12B − 2BM − Odc

(fore− Tt)(back − Tt)
c
> (cross + Odc)

2

fore
c
> Tt

(14)

Influenced by three user-defined parameters, a static threshold Ts, a darkness offsetOdc and a com-
pactness valueB, a label ’changed’ is assigned to a pixel if both inequalities are fulfilled. Otherwise the
pixel’s label is set to ’unchanged’. Notice that theback qualifier only depends on the background image,
which in practice is the average over several background images, and has to be computed only once, while
fore andcross need to be updated every frame.
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2.6 Iterative, randomized MRF computation

Under consideration of a3×3 neighbourhood, we can observe that pixels with a chessboarddistance≥ 2
do not directly affect each other and can therefore be handled in parallel.

nm m m

mmm

n n

nnn
kkk lll

kkk lll

k l k kl l

This processing step, denoted as substep, operates on a subset of the input data,
whereby pixels within each subset are mutually independentwrt. the MRF compu-
tation. To cover all the input data, several substeps have tobe executed in sequential
manner. The smallest number of substeps is given by the localpartition shown in the
left image. Four substepsk, l, m andn are executed one after each other, whereby the
order is randomly chosen, ensuring a uniform distribution over time. After all sub-
steps are done, the whole process is repeated several times until convergence in the

segmentation wrt. compactness is reached. From the implementation point of view, at each iterationj we
select the execution sequence by randomly picking one of the24 possible permutations of(k, l,m, n) by

Sj = rand (perm(k, l,m, n)) . (15)

It is important to mention that the result of each substep is written back into the change mask, which serves
as input for the next substep. A priori knowledge from the previous frame’s change mask is integrated
by initializing the change mask with the prior change mask and then start the MRF-iterations. If no prior
frame is given, the previous change mask is set to full background, i.e. black color.

The program flow, as depicted in figure 2, starts with the computation offore, back andcross based
on the average background imageBG and the current foreground imageFG. This is followed by one
iteration comprising four substeps with the change mask of the previous frame as input and a parameter
set 1 (static thresholdTs, darkness offsetOdc and compactness valueB1). Finally we run the iteration
j times with the second parameter set, where the static threshold and the darkness offset both remain
the same while the compactness value differs between between both parameter sets. The outcome of all
iterations represents the final segmentation, which servesas input for the next frame.

Figure 2: Program flow for the iterative MRF computation.
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3 Implementation Issues

Following the decision rules (14) and the iterative, randomized MRF-computation approach, we can now
design a GPU-based implementation. As modern graphics hardware consists of multiple independent
processing units, they seem to be predistined for parallel pixel operations and thus faster than nowadays
CPU’s. Although programming the GPU requires some in-depthknowledge of the underlying hardware
architecture in order to fully optimize the application forspeed, more and more work is done on imple-
menting general-purpose computation on graphics hardware(see[12]). Unfortunately, several limitations
are imposed by device drivers, for example hardware manufacturers often prioritize development under
Windows operating system over Linux. The following sections describe some hints and useful techniques
for general GPU-based programming. The graphics card we used hereby is a NVidia GeForce 6800GT,
also known as NV40.

In the last years GPU manufacturer as well as the OpenGL consortium agreed for two user-programmable
processing units on the graphics hardware:

• A Vertex Shader,

• A Fragment (or Pixel) Shader.

Figure (3) shows the processing pipeline using these two programmable Shader units. Via OpenGL
or DirectX the user defines drawing primitives and textures (geometry stage). For example one wants to
draw a rectangle defined by it’s 4 corner vertices, whereby each vertex may also correspond to a texture
coordinate. These drawing commands are sent to the graphicshardware, where the 3D-geometry is stored.
Each of these vertices is processed by the Vertex Shader by assigning per-vertex informations, such as
color, texture coordinate, 2D-projected coordinates, andby performing a 3D-2D transformation.

The rasterizer then projects the 2D-rectangle onto the drawing surface, which has similar dimensions
as the final framebuffer. Hereby, the intermediate 2D-pixelvalues as well as the texture coordinates are
computed by linear interpolation.

For each pixel within the rasterized rectangle, a separate Fragment (Pixel) Shader is executed, which
assigns a color and depth value to the pixel. In case of texture mapping activated, the pixel’s color depends
on the color of one or more textures, which reside in texture memory of the graphics hardware. Although
memory bandwidth is up to approx. 30GB/s, the latency for such texture lookups is still a bottleneck in
processing performance.

After a color and depth value is assigned to each pixel, thesevalues are stored in a target buffer,
typically the visible framebuffer. Interesting for general purpose computing on the GPU is the usage of
so-called offscreen buffers, which allow for writing into adedicated non-visible buffer. Only if necessary,
the final result image is displayed by writing into the framebuffer instead or by copying the PBuffer
contents into a texture and project it onto the visible framebuffer.

Figure 3: Processing pipeline on graphics hardware using programmable Shader units.
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3.1 Programming Language

Among the different programming languages available on themarket, the following separation can be
made:

• High-Level Shading Language

– HLSL

– GLSL

– Cg

• Low-Level Shading Language (assembler instructions)

• OpenGL 2.0

The High-Level Shading Languages have a C-like command syntax and interface the user application
through OpenGL or DirectX. HLSL is constrained to the OpenGLinterface, whereas GLSL works only
with DirectX. Cg (C for graphics), developed by NVIDIA Corporation together with Microsoft Corpora-
tion, provides both interfaces to OpenGL as well as to DirectX and is therefore our choice of programming
language. Shader programs can be compiled on beforehand or during runtime, whereby the resulting as-
sembler instructions are executable on the current hardware. Instead of using a high-level language, one
might also directly write the Shader application in pure assembler code with the risc of lacking interop-
erability and hardware compatibility. In our application we use Cg together with the OpenGL interface
under a Linux operating system.

3.2 Drawing Context

In order to allow multitasking on the graphics hardware, each application accessing the GPU must have
it’s own drawing context. Under Linux and OpenGL this is managed by toolkits such as glut, Qt or gtk.
Notice that only one context can be active at a time. In the case of multiple contexts this calls for context
switches, which are - despite of high memory bandwidth - usually very cost-intensive.

3.3 Offscreen-Buffers

The programmable Fragment Shader computes the color and depth value for an output pixel based on the
previous color of the pixel and the assigned textures. The GeForce 6 series can access up to 8 textures
within the Shader program, whereas the newer GeForce 7 series can access up to 16 textures. Reading
from the framebuffer is not granted in this Shader.

The final color and depth value is written into a buffer, typically the displayed framebuffer. Often
it is not required to display intermediate results of an application rendering in multiple steps or using
multiple Shader programs in serial. This is where the role ofa non-visible (offscreen) buffer comes
into play. Under Windows operating system the framebuffer can be switched to a readable mode and
thus acting as a normal, readable texture for the Fragment Shader. Under Linux only the latest driver
versions support this kind of operability, also known asframebuffer objects. Most common is a special
PBufferobject, which is a pure offscreen and write-only storage w.r.t. the Shader unit. This means that a
Fragment Shader program can write into a PBuffer object at one time instance. Afterwards the contents
of this buffer may be copied into a dedicated texture memory,which itself can then be read by the Shader
programs.

Indeed, this requires some additional memory for the texture storage and, in case of multiple PBuffers,
several context switches. In our application we use only onePBuffer object, whereby its contents are
copied into different textures, dependent on the currentlyapplied Shader program.

It is important to mention that PBuffer objects require a valid drawing context on beforehand in order
to operate safely, which is the task of the application framework on the CPU. PBuffer objects can store
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3Byte (RGB) or 4Byte (RGBA) unsigned char data as well as floating point (16bit and 32bit on newer
hardware). We found out that the best timing performance is reached by using standard unsigned char
data format and that especially floating point texture lookups are rather time consuming.

3.4 GPU Data Formats

As modern graphics hardware not only implements unsigned orsigned 8bit data formats but also floating
point formats in 16bit or 32bit (newer hardware operates also on 128bit formats), it is important to keep
in mind the times needed for texture lookups or buffer copies.

In our algorithm we have to compute the three image qualifiersfore, back andcross, whereby the
hardware imposed each pixel’s value ranging from 0 to 1. Obviously, 8bit resolution per value is not
sufficient for accurate computation and therefore we experimented with a 16bit floating point format.
Unfortunately, the texture lookup times are distinctivelybigger than on unsigned char 8bit formats. As
the Shader internally operates on 32bit floating point resolution, we looked for a storage type providing
acceptable accuracy combined with good timing performance. Cg supports so-called packing functions,
which allow for stacking two 16bit float values into four 8bitunsigned char’s. Clearly, each image quali-
fier is truncated from the internal 32bit float to a 16bit float and packed into 2 Bytes of the 4Byte-RGBA
unsigned char buffer. This special mode guarantees the fastest texture lookups together with accurate
pixel resolution.

3.5 Bilinear Interpolation

Since texture lookups are always time-expensive, some operations on pixel neighbourhoods can be simpli-
fied using the bilinear interpolation functionality on graphics hardware. Figure (4-a) shows how bilinear
interpolation works on two neighbouring pixels.

α

β C1

C4 C3

C2 C1

C2C4C2

C1 C2 C1

C2 C1
α

C2C1

(a) (b) (c) (d)

α

α

Figure 4: Bilinear Interpolation on the GPU reduces the required number of texture lookups for neigh-
bourhood pixel operations.

Based on the 2D-coordinates of the current pixelC1, the new texture coordinates are

Tc = (ui + α, vi), α = 0 . . . 1

wherebyui is the base coordinate ofC1 in horizontal direction andvi in vertical direction. The so-defined
area covering both texelsC1 andC2 is shown as dark-grey shaded box in the figure. Notice that OpenGL
has its coordinate system origin in the bottom left corner, whereas most image coordinate systems start
on the top left corner. The further explanations are based onthe OpenGL system.

The texture lookup with the new texture coordinatesTc returns a color valueS of

S = tex(Tc) = tex(ui + α, vi).
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Since each pixel has a size of 1×1, the left pixel with color valueC1 is covered by the area(1 − α) and
the right pixel covered by(α). Hence, the interpolated sum, returned by the texture lookup, is

S = tex(Tc) = (1 − α) · C1 + α · C2.

When calculating the exact sum of both pixels, i.e.C1 + C2, only one texture lookup withα = 0.5 has
to be done yielding

Sα=0.5 =
C1 + C2

2
.

Notice that on the GPU when using 8bit unsigned char formats,only fixed point values between 0 and 1
are possible. Greater values will be clamped to 1. The above lookup guarantees that the resulting color
value always lies in that range, but a scaling factor of 2 has to be managed for further operations.

In figure (4-b) the bilinear interpolation is extended inv-direction and thus generalizes the texture
coordinates to

Tc = (ui + α, vi + β), α, β = 0 . . . 1,

again based on the bottom left pixelC1. The resulting lookup generates the following color value:

S = tex(Tc) = (1 − α)(1 − β) · C1 + α(1 − β) · C2 + αβ · C3 + (1 − α)β · C4.

When computing the sum of all 4 pixel values, the offsetsα andβ are both0.5, which yields

Sα,β=0.5 =
C1 + C2 + C3 + C4

4
,

with a scaling factor of 4. Instead of 4 texture lookups and 3 intermediate summations, we reduced the
computation of the sum to only one texture lookup.

We further extend this approach to compute the sum of all pixels within a 3× 3 neighbourhood, which
is often required in computer vision algorithms. Herefore we need 4 texture lookups, as depicted in figure
(4-c). We can observe that the center pixelC4 is accessed 4 times, each pixel denoted asC2 2 times and
each corner pixelC1 only once. Each of the interpolated lookupsSi computes the sum of 4 pixels and
all 4 Si together result in the final sum of all 9 pixels. Considering the bottom left texture lookup and,
without loss of generality, assuming allC2 have the same color value, we retrieve

Si = (1 − α)2 · C1 + 2α(1 − α) · C2 + α2 · C4.

It turns out thatC4 occurs in the final sum 4 times and eachC2 twice, but in the real sum they appear only
once. Therefore we have to equal their coefficients by

1 · (1 − α)2
︸ ︷︷ ︸

C1

≡ 2 · α(1 − α)
︸ ︷︷ ︸

C2

≡ 4 · α2
︸︷︷︸

C4

.

Solving forα results in

α = 1/3.

Inserting intoSi and summing up all 4 lookups yields

9∑

i=1

Ci =
9

4
·

4∑

i=1

Si.
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Based on the center pixelC4 the texture coordinates can be rewritten to

Tc,1 = (ui − 1 + α, vi − 1 + α)

Tc,2 = (ui − 1 + α, vi + 1 − α)

Tc,3 = (ui + 1 − α, vi − 1 + α)

Tc,4 = (ui + 1 − α, vi + 1 − α)
9∑

i=1

Ci =
9

4
·

4∑

i=1

tex(Tc,i).

In figure (4-d) another example is given, computing the sum ofall pixels in the 8-neighbourhood of
the center pixel without taking the latter into account. Again, only 4 texture lookups and 3 summations
are required instead of 8 lookups and 7 summations.

The above techniques gain enourmous speedups in applications, computing the weighted sum of
pixels in a local neighbourhood. It is important to mention that bilinear interpolation is activated only
when texture filtering is turned on, i.e. the minification filter. This filter is applied whenever a texel
(pixel in the texture) is smaller than the resulting pixel inthe output buffer. Unfortunately, uploading a
texture to the graphics card with minification filter enabledresults in higher upload times. For example
on a Pentium4 with 3GHz, AGP8x, NVidia GeForce 6800GT, a 640×480 pixel RGB image is uploaded
within 1ms without minification filter. Enabling the latter yields approx. 2.5ms upload time. Hardware
manufacturer do not explicitely explain this behaviour, but it is important to keep this fact in mind when
running Computer Vision algorithms on the GPU.

Despite the Fragment Shader operates on 32bit floating pointdata, the interpolation in hardware is
performed with much lower resolution. NVidia claimes theirinterpolation is based on 8bit, whereas ATI
has only 5 bit resolution. Clearly, the factoreα andβ are quantized with a resolution of 8bit resp. 5bit.
Internally, both manufacturers gain their speed by readingout the texel coverage based on twodimensional
lookup-tables, wheresα andβ are used as indices. Although rendering results look nice and the user
won’t recognize a difference, the gathered results are not mathematically exact. This drawback allows
the usage of bilinear interpolation only when no highly accurate results are required, such as in the
computation ofM in equation (14). For the summation of the image qualifiersfore, back andcross, the
interpolation cannot be applied, also because of the special 16bit-packed data format used.

4 GPU-based Implementation

Figure 5 gives an overview of the program flow of the GPU implementation, whereby a fixed neighbour-
hood of3×3 is used. The round-shaped boxes in the left column symbolizethe different Shader-programs,
which are described in the following sections. Each Shader gathers information from one or more inputs
and writes into an offscreen PBuffer object. A copy-commandafterwards transfers the currently written
data into the target texture, as depicted in the right column. Thereby not the full texture object has to be
written but just the affected memory areas (grey-shaded in the right column of the figure).

4.1 TheCalcNorm-Shader

This first Shader steps through the input image, calculatingfor each pixelyi=[ri gi bi] at locationi the
three qualifiersfi, bi and ci based on an input imageFG and the background average imageBG by
computing the following three dot products:

fi = yi,f · yT
i,f

bi = yi,b · yT
i,b

ci = yi,f · yT
i,b
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fore/cross back

Copy

Copy

Copy
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M min

Copy

Copy
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Format

MaskConvert

MRF−Iter
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SumNorm

NormConvert

Ext. Mask

Ts,Odc,B1,B2

j−Iterations 4 Substeps

Figure 5: Program flow for GPU implementation.

The indicesf andb denote foreground and background pixels. The dot product computation on the GPU
is rather trivial, it is executed within one machine operation and thus much faster than a CPU variant. It
turns out that decision rule (14) is only applicable when allthree qualifiers have at least 16bit resolution.
As described in section 3.4, we pack two 16bit floating point data into one 32bit RGBA buffer. Each of
the two required buffers has the same dimensions than the input image and a depth of 4Byte, thus being
a 1st storage level buffer (see fig. 6 in section 4.4).

Only when a background image has changed, theb-buffer has to be updated, while remaining constant
during normal operation. Hence, we pack the valuesfi andci in one RGBA texture andbi in a separate
RGBA texture.

4.2 TheSumNorm-Shader

After the dot products are computed per pixel, the three qualifiers fore, back, andcross can now be
derived by following eq. (3). Accounting forfi, bi andci, the equation is simplified to summing up all
dot products in the neighbourhoodWi around the pixel locationi:

fore =
∑

jǫWi

fj

back =
∑

jǫWi

bj

cross =
∑

jǫWi

cj

As mentioned in section 3.5, hardware accelerated bilinearinterpolation cannot be performed because of
the packed 16bit data format used. Againfore andcross are stacked in a RGBA texture whileback
remains in a separate RGBA buffer. Notice thatback has to be computed only once during normal
operation and needs to updated only when the background image has changed.
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4.3 TheNormMixBack-Shader

As will be seen in theNormConvert-Shader in section 4.4, memory conversions are performed inorder
to optimize the amount of texture lookups and to gain full power of the GPU by operating on 4 color
values (RGBA) in parallel. The texture buffer for thefore andcross qualifiers are already optimally
used, whereas the buffer for theback values is only filled half, i.e. the first 16bits of the 32bit storage is
written. Indeed, by splitting theback texture into two halfs and copying the data of the second halfinto
the unused 16bits of the first half, we can reduce the amount ofrequired texture lookups in the following
computation steps. Clearly, by applying a texture lookup, we obtain twoback values at once. This quite
simple task is performed by theNormMixBack-Shader.

4.4 TheNormConvert-Shader

Now that all parameters for testing the decision rule (14) are known, the iterative MRF computation
begins. However, for each substep in an iteration the required inequalities have to be recalculated. As
this would slow down the overall process, the ruleset is reformulated to a simpler test. The only variable
during a MRF iteration isM and therefore we can rewrite the decision rule based onM . We first define
a new parameterS

S :=
Ts + 12B − Odc

2B
,

which simplifies the definition of the total thresholdTt to

Tt = 2B · S − 2B · M.

The second inequality of decision rule (14) now turns into

fore
c
> 2B · S − 2B · M,

from whichM is extracted

M
c
> S − fore

2B
. (16)

The first inequality of decision rule (14) turns into

(fore − Tt)(back − Tt)
c
> (cross + Odc)

2

fore · back − fore · Tt − back · Tt + T 2
t

c
> (cross + Odc)

2

fore · back − (2B · S − 2B · M)(fore + back) + (2B · S − 2B · M)2
c
> (cross + Odc)

2.

By defining

K :=

√

(fore − back)2 + 4(cross + Odc)2

4B

and solving forM we get

M
c
> S + K − fore + back

4B
. (17)

As a ’changed’ label is only applied when the inequalities (16) and (17) are both fulfilled, the conjunction
of both formulas yields:

M
c
> S + max

(

−fore

2B
,K − fore + back

4B

)

,
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which is equal to

M
c
> S − fore

2B
+ max

(

0,K +
fore − back

4B

)

︸ ︷︷ ︸

Mmin

.

We summarize the above formulas and get a decision rule set, suitable for fast implementation:

M = 2 · νB(qi=c) + νC(qi=c)

K =

√

(fore − back)2 + 4(cross + Odc)2

4B

S =
Ts + 12B − Odc

2B

Mmin = S − fore

2B
+ max

(

0,K +
fore − back

4B

)

M
c
>
<
u

Mmin

(18)

Notice that during the MRF iteration, the image qualifiersfore, back andcross remain constant, as
well as the parametersS andK. Thus,Mmin can be pre-calculated w.r.t. a parameter setB, Ts, andOdc.
Due to the fact thatM can only vary between 0 and 12 and therefore consumes only 4 bits, bothMmin,1

for the first parameter set andMmin,2 for the second parameter set are packed into one 8bit color value
by ((Mmin,1 ≪ 4) | Mmin,2). As described in section 2.6, the iterative MRF-computation operates
on 4 subsets of the input data. These subsets are randomly chosen and sequentially processed. In order
to have this processing step independent of the currently selected subset of the input data, i.e. the change
mask with labels ’unchanged’ (=value 0) and ’changed’ (=value 1), we split the latter into 4 equally sized
data buffer. Figure 6 gives an overview of the implemented data structures.
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Figure 6: Data formats used on the GPU
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The input data obviously has the same dimensions than the segmented image mask, denoted as height
h and widthw. Since the change mask pixels can only store two values (0, 1), the buffer has a depth of
1Byte. Each 2× 2 block of input pixels consists of elements of the 4 subsetsk, l, m andn. Starting at the
first storage level, the input data is then separated into 4 memory blocks, which each has half the width
and half the height of the input data. MRF computation is now performed on one of these equally sized
memory blocks.

Due to the fact that the graphics hardware can process 4Bytesat once, we decided to convert the 4
subsets into a second storage level, whereby the resulting depth is 4Byte. This is done by vertically slicing
each subset into 4 equally sized subblocks and assigning them to one of the 4 available color channelsr,
g, b anda. Clearly, the bottommost quarter of the subsetk is assigned to the red channel of the second
storage level, that iskr. The topmost quarter of the same subset is stored in the alphachannel (ka) and
so forth. As depicted in figure 6 each subblock has now a depth of 4Byte and dimensionsw/2 × h/8.
Combining these 4 subblocks into one storage buffer leads tothe internal mask format, on which all MRF
computations are done by processing 4 pixels in parallel.

The tasks of theNormConvertShader are the following:

1. Fetchfore, back andcross, corresponding to the current pixel location,

2. ComputeMmin,1 andMmin,2 for each parameter set and combine both in a 1Byte valueMmin,

3. Store the resultingMmin value in a 1st storage level PBuffer.

Since the image qualifiersfore andcross are no longer needed by successing computations, over-
writing the texture memory, which storesfore andcross, by the valuesMmin reduces the overal amount
of texture memory usage. Thus, after theNormConvert-Shader has finished, the PBuffer is copied into
the first storage level texture, where the two 16bit qualifiers fore andcross have been stored previously.

4.5 TheMRF-Iter-Shader

As already mentioned in the previous sections, the iterative MRF-computation comprises 4 substeps, each
of which solves the MRF for compactness and smoothness. Thisis done by calculatingM per pixel and
comparing it with the stored valueMmin. The different subsets are selected based on eq. (15).

As calculation ofMmin for a pixel within a subset depends on its surrounding neighbours, special
care has been taken on the cutting edges, where the slicing ofthe subset into the 4 color channels occurs
(see figure 6). For example,Mmin has to be computed for a pixel in the top row of the subsetkr (red
channel ofk), which, amongst others, requires access to pixels one lineabove. Indeed, these pixels do not
reside in the same color channel, but now inkg (green channel ofk). Therefore we distinguish between 3
processing areas within each subset, as demonstrated in figure 7.
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Figure 7: Separation into 3 processing zones for theMRF-Iter-Shader
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In the shown example, the subsetk is separated into 3 vertical pieces. Thetop- andbottom-parts
are one pixel high, whereas thecenter-area covers the rest of the data. The MRF-computation is now
performed on each area sequentially, whereby again operations are performed in exploit the 4Byte-
parallelism. Clearly, within each of thetop, center and bottom areas we process the color channels
r, g, b, anda of a selected data subset at the same time.

Figure 8: Control-Flow (solid lines) and Data-Flow (dashedlines) of theMRF-Iter-Shader

The Shader’s control- and data-flow is shown in figure 8. The process starts by choosing the sequence
of the 4 substepsk, l, m, andn on the CPU. For each substep in this sequence and the comprising 3 areas
top, center, andbottom, theMRF-Iter-Shader solves the MRF. This computation includes the following
steps:

1. ReadMmin from the texture buffer (1st storage level texture),

2. ComputeM , dependent on the local pixel neighbourhood, by reading thepixel labels stored in the
working, mask buffer

3. Apply the segmentation decision rule by assigning an unchanged label (pixel value 0) or a changed
label (pixel value 1) followingM

c
>Mmin.

The output values stored in the offscreen PBuffer are then copied into the previous mask buffer and thus
the old values are overwritten. All computations are repeated until the required number of iterations is
reached. Notice that the first iteration operates on the firstparameter setB1, Ts andOdc while successive
iterations use the second parameter setB2, Ts andOdc. At the very first beginning the internal mask buffer
is initialized with all pixel labels assigned an ’unchanged’ label, i.e. filling the internal mask format with
black color.
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In the following sections a detailed description of the computation ofM is given w.r.t. the processing
areastop, center, andbottom.

Keeping in mind that each 2× 2 block in the input image consists of the subsetsk, l, m, andn,
the direct neighbour on the right side of an elementki is an element of the subsetl. This neighbour has
the same relative texture coordinates in the 1st storage level. For example, the texture coordinates of
pixel ki areTc = (u, v). The right neighbour has the same relative coordinates, butsince the subsets are
vertically positioned in the second storage level, their absolute coordinates in the latter differ. The full
pixel correspondence between input pixels and the internalmask format is given by table (1).
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8−1) na(
w
2 −1, h
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0 1 2 3 · · · w − 2 w − 1

Table 1: Conversion Matrix between the internal mask formatand the input image.

A very important observation on the data formats and storagelevels is that neighbouring pixels in the
input image correspond to pixels in the internal mask formatwith equal relative texture coordinates only
when they belong to the same 2× 2 pixel block. Such block is shown in table (1) (light grey shaded
cells), with the relative texture coordinates for each datasubset being(1, 1). Neighbouring pixel blocks
are assigned indices as defined on the left figure:
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4.5.1 Center Area

Based on the decision rule set in equation (18),M is computed as follows:

M = 2 · νB(qi=c) + νC(qi=c)

SinceνB(qi=c) represents the number of pixels inhv-direction with a ’changed’ label (pixel value=1),
this term can be simplified to the summation of all pixels inhv-dir. The same rule applies toνC(qi=c)
and thus yields

M = 2 ·
∑

i ǫ (hv−dir.)

ci +
∑

j ǫ (diag−dir.)

cj,

wherebyci is the color value (0 or 1) of a neighbour pixel inhv-direction, andcj is the color value of a
neighbour indiag-direction. Considering an output pixel in the center area of a subsetk, denoted aski,
the correspondinghv-neighbours arell, mi, li, andmb, whereas thediag-neighbours arenl, ni, nb, and
nbl. Thus,ci andcj are derived as

∑

i ǫ (hv−dir.)

ci = ll + mi + li + mb,

∑

j ǫ (diag−dir.)

cj = nl + ni + nb + nbl.

Now M is computed by

Mk = 2 · (ll + mi + li + mb) + (nl + ni + nb + nbl)

= 2 · (ll + li)
︸ ︷︷ ︸

a

+2 · (mi + mb)
︸ ︷︷ ︸

b

+ (nl + ni + nb + nbl)
︸ ︷︷ ︸

c

Without further optimization the above step would require 8texture lookups. Due to the fact that
pixels of the same subset in neighbouring pixel blocks are stored as direct neighbours in the internal
mask format, i.e. their texture coordinates have a chessboard distance of 1, we make use of the hardware
accelerated bilinear texture interpolation (see section 3.5). Hence, the summation termsa, b, andc can be
simplified by applying the following texture lookups (the dark grey box represents the texel, which will
be interpolated by the graphics hardware):

a b c

Thea-term linearly interpolates between the pixelll andli. We denote this interpolationld(−0.5, 0),
which is equal to the texture lookuptex(Tc) = tex(u−0.5, v +0+h/8) within the internal mask format
w.r.t. a considered pixel’s coordinates(u, v). In the same way theb-term results inmd(0,−0.5) and the
c-term yieldsnd(−0.5,−0.5). The interpolated texture lookups of the 3 terms return color values

vala = ld(−0.5, 0) =
1

2
(ll + li),

valb = md(0,−0.5) =
1

2
(mi + mb),

valc = nd(−0.5,−0.5) =
1

4
(nl + ni + nb + nbl).
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It turns out that the quantitative relation between the 3 terms is already correct, but just the absolute scale
has to be adapted. Thus, applying a global scale factor of 4 leads to

Mk = 4 · (2a + 2b + c)

= 4 · (vala + valb + valc)

= 4 · (ld(−0.5, 0) + md(0,−0.5) + nd(−0.5,−0.5))

By utilizing the bilinear texture interpolation, we have now reduced the number of texture lookups
from 8 to only 3. Indeed, this method increases processing performance distinctively. When repeating
the above steps for the remaining subsetsl, m, andn, we can summarize the computation ofM for the
center-area:

a b c

Mk = 4·



ld(−0.5, 0)
︸ ︷︷ ︸

a

+ md(0,−0.5)
︸ ︷︷ ︸

b

+ nd(−0.5,−0.5)
︸ ︷︷ ︸

c





Ml = 4 ·



kd(0.5, 0)
︸ ︷︷ ︸

a

+ md(0.5,−0.5)
︸ ︷︷ ︸

b

+ nd(0,−0.5)
︸ ︷︷ ︸

c





Mm = 4 ·



kd(0, 0.5)
︸ ︷︷ ︸

a

+ ld(−0.5, 0.5)
︸ ︷︷ ︸

b

+ nd(−0.5, 0)
︸ ︷︷ ︸

c





Mn = 4 ·



kd(0.5, 0.5)
︸ ︷︷ ︸

a

+ ld(0, 0.5)
︸ ︷︷ ︸

b

+ md(0.5, 0)
︸ ︷︷ ︸

c





4.5.2 Top Area

When looking at the topmost row of a subset in the internal mask format, we observe that direct pixel
neighbours do not necessarily reside in the same color channel. For instance, considering an elementmi

in the red color channel of the subsetm at locationmr(1, h/8−1). This element corresponds to an output
pixel at location(2, h/4 − 1), as can be seen in table (1). The upper neighbour of this pixelmaps to an
elementkt, which belongs to the subsetk but relies in the green color channel. Moreover, the neighbour’s
v-coordinate within the second storage level is not increased by 1 as expected, but decreased byh/8 − 1
based on the coordinate origin of the subsetk.

The same observation can be made on an elementni at locationnr(1, h/8 − 1) in the red color
channel, which has an upper neighbourlt at locationlg(1, 0) in the green color channel of the subsetl.

We summarize the observations:

• Elementsmi andni in the red color channel have their upper neighbours in the green color channel,
elementsmi andni in the green color channel have their upper neighbours in theblue color channel,
elementsmi andni in the blue color channel have their upper neighbours in the alpha color channel.

• Elementsmi andni in the alpha color channel have no direct upper neighbour since they belong to
the image border. Therefore only their values itself are used, which is equal to having a background
neighbour.

• Upper neighbours of elementsmi andni have coordinates(u, 0) and thus belong to thebottom-
area of the considered subset.
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The computation ofM for the elementsk andl is equal to the center area, thus

Mk = 4 · (ld(−0.5, 0) + md(0,−0.5) + nd(−0.5,−0.5)) ,

Ml = 4 · (kd(0.5, 0) + md(0.5,−0.5) + nd(0,−0.5)) .

For an elementm we basically get

Mm = 2 · (ki + kt)
︸ ︷︷ ︸

Mm,k

+2 · (nl + ni)
︸ ︷︷ ︸

Mm,n

+ (ltl + lt + li + ll)
︸ ︷︷ ︸

Mm,l

.

Since processing is done on all 4 color channels in parallel,we can separateMm,k into 4 parts:

Mm,k =







Mm,k,r

Mm,k,g

Mm,k,b

Mm,k,a







.

When looking at the red color channelMm,k,r we can formulate

Mm,k,r = kd,r(0, 0) + kd,g(0, 1−
h

8
),

which describes the sum of the current pixel block’s elementk in the red channel and the upper neighbour
k in the green color channel with a relativev-offset of(1−h/8). The green and blue channels are equally
specified:

Mm,k,g = kd,g(0, 0) + kd,b(0, 1−
h

8
),

Mm,k,b = kd,a(0, 0) + kd,a(0, 1−
h

8
).

Since an elementm in the alpha color channel belongs to the image’s borderline, it does not have any
upper neighbour and thus yields

Mm,k,a = kd,a(0, 0).

Combining the above formulas results in

Mm,k = kd(0, 0) ·







1
1
1
1







+ kd(0, 1−
h

8
).gbar ·







1
1
1
0







.

This notation means that from the right summation term we read out the color channels in the sequence
g, b, r, a instead ofr, g, b, a, as it would the general case. Such a ’swizzle’- operator is available on the
GPU without time penalty. Any kinds of mixtures are possible, also reading out multiple times the same
color channel. The vector(1, 1, 1, 0)T denotes the multiplication of the red, green and blue channel with
1 and the alpha channel with 0. Clearly, we only take the first channels into account while ignoring the
alpha value. For simplification we rewrite

Mm,k = kd(0, 0) + kd(0, 1−
h

8
).gba0,
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which combines the vector multiplication with the swizzle-operator. The0 in this new operator repre-
sents no color value at all and thus only the color channelsg, b, a of kd(0, 1−

h
8 ) are added to the channels

r, g, b of kd(0, 0). The result is written into ther, g, b channels ofMm,k, whereas in thea channel only
the valuekd(0, 0) is present.

Compared with thek andl elements, we now require two texture lookups instead of justone. How-
ever, since the top-area only consists ofw/2 elements, the time penalty is rather small and thus negligible.

The computation ofMm,l is quite similar to the above, with the only difference that we need to sum
two elements in each color channel. Clearly, the termll + li can be replaced by an interpolated texture
lookup ld(−0.5, 0) within the same color channel while the termltl + lt can be replaced by a lookup
ld(−0.5, 1−h

8 ) in the next color channel. Notice that each interpolated lookup must be multiplied with a
scale factor of 2 in order to retrieve the correct sum. Thus weformulate

Mm,l = 2 · ld(−0.5, 0) + 2 · ld(−0.5, 1−
h

8
).gba0.

By again utilizing linear interpolation, the termMm,n is derived:

Mm,n = 2 · nd(−0.5, 0).

Combining all three partsMm,k, Mm,n andMm,l we rewrite

Mm = 2 · Mm,k + 2 · Mm,n + Mm,l

= 2 ·
(

Mm,k + Mm,n +
Mm,l

2

)

= 2 ·
(

kd(0, 0) + kd(0, 1−
h

8
).gba0 + 2 · nd(−0.5, 0) + ld(−0.5, 0) + ld(−0.5, 1−

h

8
).gba0

)

= 4 ·
(

kd(0, 0) + kd(0, 1−
h
8 ).gba0

2
+ nd(−0.5, 0) +

ld(−0.5, 0) + ld(−0.5, 1−h
8 ).gba0

2

)

.

Finally we summarize the computation ofM for the top area

Mk = 4 · (ld(−0.5, 0) + md(0,−0.5) + nd(−0.5,−0.5))

Ml = 4 · (kd(0.5, 0) + md(0.5,−0.5) + nd(0,−0.5))

Mm = 4 ·
(

kd(0, 0) + kd(0, 1−
h
8 ).gba0

2
+ nd(−0.5, 0) +

ld(−0.5, 0) + ld(−0.5, 1−h
8 ).gba0

2

)

Mn = 4 ·
(

ld(0, 0) + ld(0, 1−
h
8 ).gba0

2
+ md(0.5, 0) +

kd(0.5, 0) + kd(0.5, 1−
h
8 ).gba0

2

)

4.5.3 Bottom Area

For the computation ofM in the bottom area, the same rules can be applied. The only difference is that
instead of elementsm andn, now the elementsk andl need special treatment w.r.t. texture coordinates.
The lower neighbour of an elementk at positionka(u, 0) in the alpha color channel is an elementm at
positionmb(u, h/8− 1) in the blue color channel. Elements in the red color channel do not have a direct
lower neighbour, because they belong to the image border. Thus, similar to the top area, only the element
itself is taken into account.
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For the bottom area we can formulate:

Mk = 4 ·
(

md(0, 0) + md(0,
h
8−1).0rgb

2
+ ld(−0.5, 0) +

nd(−0.5, 0) + nd(−0.5, h
8−1).0rgb

2

)

Ml = 4 ·
(

nd(0, 0) + nd(0,
h
8−1).0rgb

2
+ kd(0.5, 0) +

md(0.5, 0) + md(0.5,
h
8−1).0rgb

2

)

Mm = 4 · (kd(0, 0.5) + ld(−0.5, 0.5) + nd(−0.5, 0))

Mn = 4 · (kd(0.5, 0.5) + ld(0, 0.5) + md(0.5, 0))

4.5.4 Shader Programs

From the implementation point of view we have to decide how many Vertex- and Fragment Shader pro-
grams we need in order to computeM . A straightforward solution would be to implement 12 different
Vertex- and also 12 Fragment Programs (4 subsets, each comprising 3 areas). However, when removing
redundancy we can reduce the required number of Vertex Programs to 8 and for Fragment Programs to
just 3. The underlying methodology is described in the next two paragraphs.

Vertex Programs (VP). A Vertex Program is executed for each drawn vertex, initiated by OpenGL or
DirectX commands. For instance, a rectangle is fully definedby its 4 corner vertices. Each vertex can
have attributes, whereas its texture coordinates are amongthe most important ones for our application.
After applying some manipulation, i.e. 3D-transformations, texture coordinate generation, and 3D-2D-
transformation, the output of the program is sent to a rasterizer unit on the graphics hardware. The
resulting fragment, i.e. the drawn rectangle, is sent to theFragment Shader units, whereby a Fragment
Program is executed for each pixel covered by the consideredfragment. Texture coordinates as well as
pixel coordinates are linearly interpolated by the GPU.

When looking at the differentM -formulations in the previous sections, we can observe thatthe texture
coordinates forMk in the center area are equal to those inMk in the top area. Thus, both parts can be
merged together into one Vertex Program. The following table lists all required Vertex Programs in the 4
subsets and the 3 areas.

k l m n
top VP1 VP2 VP5 VP6

center VP1 VP2 VP3 VP4
bottom VP7 VP8 VP3 VP4

Fragment Programs (FP). A Fragment Program is executed for each rastered pixel covered by the
considered fragment. It fetches texels from different textures, performs some computation and outputs a
final color, i.e. the valueM .

For the computation ofM within the center area we observe that all 4 subsets undergo the same
processing, which is basically the summation of 3 interpolated texture values. The differences in the
texture coordinates are of no importance, since they are defined within the Vertex Programs. The same
Fragment Program can be applied toMk andMl in the top area and toMm andMn in the bottom area.
The remaining parts require each 5 texture lookups but because of different swizzle-operators, only those
within the same processing area can be combined. This yieldsthe following list of required Fragment
Programs.

k l m n
top FP1 FP1 FP2 FP2

center FP1 FP1 FP1 FP1
bottom FP3 FP3 FP1 FP1
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4.6 TheSegConvert-Shader

After the iterative MRF-computation, the internal change mask has to be backtransformed into a 1st
storage level format, suitable for further processing. Hence, this last Shader converts the internal change
mask into an RGB buffer, having the same dimensions as the input image, with white foreground and
black background regions.

The Fragment Shader is executed for each considered ouput pixel, ranging from(0, 0) to (w−1, h−1),
wherebyw is the width andh the height of the input image. Table (1) in section 4.4 lists the pixel cor-
respondences between each output pixel in the 1st storage level. The dark grey boxes indicate the output
pixel position. Elements of the 4 input data subsetsk, l, m, andn are arranged in a 2× 2 block (light
grey block in the table), as described in section 4.4.

The Shader’s task w.r.t. an output pixel is to fetch the colorvalue from the internal mask format at
the position corresponding to the current pixel, as listed in table (1), and transfer it to the output buffer.
Although this processing step is rather simple, the implementation is somewhat tricky, since the input
pixel coordinates for each consecutive output pixels differ. Clearly, the input texel for an output pixel
location(2, 2) is kr(1, 1). Based on the internal mask format (second storage level), this refers to a tex-
ture coordinate ofTc = (1, 1) in the red color channelkr of the subsetk. Thus, the output color is
out = tex(Tc) = tex(1, 1). The neighbouring output pixel at position(3, 2) refers to an input texel with
coordinates(1, 1) in the subsetl, which has absolute texture coordinatesTc = (1, 1 + h

8 ) based on the
internal mask format. The texture coordinates for an outputpixel at location(2, 3) areTc = (1, 1 + 2h

8 )

and for location3, 3) they areTc = (1, 1 + 3h
8 ). We can observe that only thev-coordinate of the input

texel varies within a 2× 2 block of the output buffer.

We store the 4 differentv-offsets in a 2× 2 texture and activate the REPEAT-mode of the texture
lookup. This mode ensures that when accessing a texel at position (u, v), the texture coordinates are
converted intoTc,repeat = (u mod 2, v mod 2).

(0, 2h
8 ) (0, 3h

8 )

(0, 0) (0, h
8 )

Now the flow of operation can be designed w.r.t. an output pixel location(u, v):

1. Fetch the v-offset from the 2× 2 texture in REPEAT-mode,

2. Compute the texture coordinate for the input texel byTc =
(
⌊u

2 ⌋, ⌊v
2⌋ + texoffs(Tc,repeat)

)
,

3. Fetch the input texel and transfer it to the output buffer.
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5 User’s Guide

This section gives a detailed description of the distributed software package, providing GPU-based foreground-
background segmentation. The specific requirements are listed as well as the delivered files, and imple-
mentation details on the public methods of the core library class are given.

The software package includes the core library and an example program demonstrating the usage of
the former. Our prototype runs under Linux operating systemand supports the latest NVidia cards, such
as the GeForce 6 series. The Vertex- and Fragment Shaders arewritten in Cg with OpenGL bindings.
Access to the core library is handled in a thread-safe way, such that multi-threading is supported.

5.1 Requirements

Hardware Requirements. In order to run the provided segmentation algorithm on the GPU, the fol-
lowing hardware-specifications must be reached:

• OpenGL NV30 fragment profile is needed supporting pack/unpack-functions.

• Principally, there is no preferable manufacturer. In general, Nvidia’s GPU’s have more accurate bi-
linear interpolation facilities, while ATI’s processors sometimes provide a faster memory interface
as a result of higher clock-rates.

• The graphics unit must support rectangular textures with non-power-of-two size in each direction
as well as the PBuffer extension.

For our prototype we used NVidia’s GeForce 6800GT card with 256MB onboard texture memory.

Software Requirements. The following software specification must be met on the executing computer:

• While the PBuffer implementation supports multiple operating systems, our prototype software
was written for Linux only. However, porting to Windows or Macintosh systems should be possible
without loss of functionality.

• In order to run the application, at least an OpenGL context must be created, as can be seen in the
example-application delivered with the library. Any kind of toolkit providing an OpenGL interface
may be suitable, i.e. glut, Qt, gtk.

• OpenGL must be installed on the system with the drivers for the graphics board providing the latest
OpenGL extensions supported.

• Cg (C for graphics), downloadable from the NVidia’s website. The released version does directly
effect the runtime, since later compiler support newer hardware capabilities and therefore produces
more suitable assembler code. For our prototype, release 1.3 has been used.

Image requirements. Some restrictions on the input images are imposed as follows:

• The height must be a factor of 8, but at least 16 pixels. This directly results from our internal
mask format, which divides the height into 4 equally sized subsets with height/8 and depth=4Byte.
TheMRF-Iter-Shader requires at least one pixel in the top-area and one pixel in the bottom-area.
Since the center area is not necessarily used, a minimum of 2 pixels in each subset is required, thus
yielding a minimum height of 16 pixels.

• The width must be a factor of 2. Again, this directly results from the internal mask format, which
has half the width of the input image.
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Memory Usage. The amount of required texture memory on the graphic card depends on the size of
the input images. Based on the widthw and heighth, the following table lists all textures used and gives
an overview of the memory consumption.

Internal
Name

Description
width
[px]

height
[px]

depth
[Byte]

texAvg Average background image w h 3

texSrc Input (foreground) image w h 3

texSeg Segmentation output w h 3

texSegint Internal Mask Format w/2 h/2 4

texNormsFC Storingfore andcross, laterMmin w h 4

texNormsB Storingback w h 4

texConvert v-offset matrix, used for theSegConvert-Shader 2 2 1

The overall texture memory required can thus be calculated by

TexMem = 18 · w · h + 4,

which leads to approx. 5.5MBytes for input images of size 640×480 pixels.

5.2 Distributed files

The distributed segmentation package includes the following files:

./ ./lib/
CMakeLists.txt CMakeLists.txt
main.cpp allshaders include.h
norms.cg libgpuseg.h
segment.cg libgpuseg.cpp
segconvert.cg pbuffer.h
imgSrc.png pbuffer.cpp
imgAvg.png
imgSeg.png

In the toplevel directory, the different Shaders (Vertex and Fragment) are implemented in the.cg -
files, whereby innorms.cg theNormCalc-, NormMixBack-, andNormConvert-Shaders reside. The iter-
ative MRF-computation, split into 8 Vertex- and 3 Fragment Shaders, is implemented in thesegment.cg
file. segconvert.cg holds the implementation of theSegConvert-Shader. The examplemain.cpp -
file demonstrates the usage of the segmentation library by first reading an average input image (imgAvg.png )
and an actual source image (imgSrc.png ), performing the segmentation and finally writing the output
into an imgSeg.png file. The example is compiled using CMake, whereas theCMakeLists.txt
lists all dependencies and header files required. The core library is found under thelib -subdirectory and
must be compiled separately, again by using CMake. The declarations of the core segmentation reside in
libgpuseg.h and the implementation can be found inlibgpuseg.cpp .

Two ways of linking the Shader code are provided:

1. Dynamically compiling the Shader files (norms.cg , segment.cg , andsegconvert.cg ),

2. Statically compiling the Shader code by including the fileallshaders include.h .

The dynamic linkage obviously has the advantage of online-adaptations to the Shader program without
the necessity of recompiling the library itself. Each time the library code is executed, it reads the Shader
files, compiles them by sending them to the Cg-compiler, and executes the returned assembler code on
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the GPU. However, it is important to mention that the Shader files must be in the executable search path,
i.e. in the same directory as the example application. Alternatively, a static linkage is providing a pseudo-
compile-time version, which includes theallshaders include.h file. In this header file, the same
Shader listing as in the Shader files can be found, but now assigned to different string variables. These
strings are compiled at runtime, but of course the library has to be rebuilt after modifications. Pathnames
are no longer of importance in the static version. Switchingbetween the dynamic and the static version
is done by changing the 3rd codeline in thelibgpuseg.cpp file:

#define DYNAMIC_CGFILES

The filespbuffer.h andpbuffer.cpp provide code for the PBuffer implementation, executable
under Linux/Unix, Windows and Macintosh operating systems.

5.3 Library class description

The core library is implemented in thelibgpuseg.h and libgpuseg.cpp files under thelib -
subdirectory. It contains all code initializing the GPU, creating the textures and PBuffers, setting and
modifying the parameter sets, performing the segmentation, providing methods for accessing the resulting
segmentation texture, and finally safely cleaning up the reserved memory and instanciated data structures.

In the remaining section the following public methods are described in detail:

class CGpuSeg_Base
CGpuSeg_Base();
˜CGpuSeg_Base();
int init(int w, int h, bool bPrintDebug=false);
int set_background(unsigned char * imgBG, int depth=3);
int set_foreground(unsigned char * imgFG, int depth=3);
int segment(bool bWaitFinished);
int segment(unsigned char * imgFG, bool bWaitFinished, int depth=3);
int get_segmentation(unsigned char * imgSeg, int depth=1);

void set_B1(float B1_);
void set_B2(float B2_);
void set_Ts(float Ts_);
void set_Odc(float Odc_);
void set_MRFiter(int MRFiter_);
void set_Params(float B1_, float B2_, float Ts_, float Odc_ ,

int MRFiter_);

float get_B1();
float get_B2();
float get_Ts();
float get_Odc();
int get_MRFiter();
void get_Params(float &B1_, float &B2_, float &Ts_, float & Odc_,

int &MRFiter_);
int get_width();
int get_height();
GLuint get_SegTex();

Functions declared as thread-safe first acquire a class-internal pthread-mutex before executing the
requested code and finally releasing the same mutex.
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CGpuSegBase(): The constructor of the class creates a pthread-mutex, whichallows a thread-safe
access to all important internal functions.

∼CGpuSegBase(): The destructor cleans up the reserved memory by deleting therequired texture
memory, the OpenGL display lists, the PBuffers, the Cg-programs, and the pthread-mutex. This function
is thread-safe.

int init(
int w, int h, bool bPrintDebug=false): Before the segmentation can be used, the class
instance must be initialized by defining the widthw and heighth of the working images under consid-
eration of the limitations given in section 5.1. Afterwards, the Cg-programs are read and compiled, the
current existing OpenGL context initialized, the texturescreated, some useful OpenGL display lists de-
fined, and finally the PBuffers created and initialized. Whenthe parameterbPrintDebug is set to
true , the assembly listing of the Shader programs is output. An alread initialized class instance may be
re-initialized. The function is thread-safe and returns -1in case of any error or 1 otherwise.

int set background(
unsigned char * imgBG, int depth=3): With this method a new background image can be
uyploaded, defined by the data bufferimgBG. The image must be of RGB-type (depth=3 ) with an
optional alpha-channel (depth=4 ). The image’s origin is on the top-left corner and pixels arestored in
a row-wise manner. Each time a new background image is set, the internal working mask is cleared and
the first segmentation run takes care of one-time computations, such as theback qualifiers. The function
is thread-safe and returns -1 in case of any error or 1 otherwise.

int set foreground(
unsigned char * imgFG, int depth=3): A new source image is provided to the class in-
stance through this method, whereby the same rules for the image data as for the background image
apply. The function is thread-safe and returns -1 in case of any error or 1 otherwise.

int segment(
bool bWaitFinished): This method initiates a foreground-background segmentation, based on
the current source image and the average background image. The computation is split into 3 parts, each
operating on a PBuffer object. Care has been taken for futureimprovements on floating point PBuffers
by separating the PBuffers into one storing the image qualifiers (this could be a float-buffer in future
versions) and another storing the internal mask format. Notice that in case of two different PBuffer
objects, a context switch has to occur, which might slow downthe overall performance. If the parameter
bWaitFinished is settrue , the function returns only when the GPU has finished the computations.
This is only useful when the user’s application requires knowledge about ready-to-operate GPU. The
function is thread-safe and returns -1 in case of any error or1 otherwise.

int segment(
unsigned char * imgFG, bool bWaitFinished, int depth=3): This method combines
the functionsset_foreground andsegment by first setting the foreground image and then perform-
ing the segmentation. The function is thread-safe and returns -1 in case of any error or 1 otherwise.

int get segmentation(
unsigned char * imgSeg, int depth=1): In case the final segmentation result is not needed
for further compuations on the GPU, the binary segmentationimage might be downloaded to a buffer,
pointed to byimgSeg . The buffer memory must already be allocated on beforehand and can have a
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pixel-depth of 4 Bytes (RGBA), 3 Bytes (RGB) or 1 Byte, whereby the latter is the fastest one. Fore-
ground regions are assigned a color value of 255 and background regions have value 0. The readout
of the texture memory, storing the segmentation, ensures that all previous OpenGL commands have fin-
ished and thus the internal instruction pipeline is emptied. Clearly, when running the segmentation, the
flag bWaitFinished must not be set in case theget_segmentation is called successively. The
function is thread-safe and returns -1 in case of any error or1 otherwise.

void set B1(
float B1 ): This method modifies the compactness valueB of the first parameter set. Typical
values range between1 and3. The higherB1 is, the lower the trigger level for a pixel is to be assigned
a foreground segment, dependent on the local neighbourhood. Since the first parameter set is used for
solving compactness in consecutive image frames, aB-value too high might result in a temporal smearing
effect of foreground regions. The function is thread-safe.

void set B2(
float B2 ): This method modifies the compactness valueB of the second parameter set. Typi-
cal values range between100 and700, dependent on the image contrast. Higher values result in more
compact regions and thus smoother foreground areas. The function is thread-safe.

void set Ts(
float Ts ): This method modifies the static threshold of both parameter sets. In practice, lower
values result in highly cluttered foreground regions, whereas higher values might not detect foreground
correctly. However, small outliers in the first segmentation are eliminated by the initial run on the first
parameter set, whereas occluded foreground is usually better handled by taking darkness compensation
into account as well as the iterative compactness computation using the second parameter set. Typical
values range between50 and500. The function is thread-safe.

void set Odc(
float Odc ): This method writes the darkness offset of both parameter sets. Higher values benefit
better segmentations on areas with dark foreground and bright background. Typical values range between
1000 and30000. The function is thread-safe.

void set MRFiter(
int MRFiter ): This method modifies the number of iterations during the MRF-computation. Higher
values result in smoother and more compact segmentations, but take more computation time. Typical val-
ues range between4 and8. The function is thread-safe.

void set Params(
float B1 , float B2 , float Ts , float Odc , int MRFiter ): This method com-
bines the above functions by setting both parameter sets at once. The function is thread-safe.

float get B1(): This thread-safe function returns the currently set compactness value for the first
parameter set.

float get B2(): This thread-safe function returns the currently set compactness value for the sec-
ond parameter set.

float get Ts(): This thread-safe function returns the currently set staticthreshold value.
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float get Odc(): This thread-safe function returns the currently set darkness offset.

int get MRFiter(): This thread-safe function returns the currently set numberof MRF-iterations.

void get Params(
float &B1 , float &B2 , float &Ts , float &Odc , int &MRFiter ): This thread-
safe function reads both parameter sets at once and stores the result in the submitted reference variables.

int get width(): This thread-safe function returns the currently set width of the working images.

int get height(): This thread-safe function returns the currently set heightof the working im-
ages.

GLuint get SegTex(): The segmentation result resides in a texture memory on the graphics hard-
ware. In order to allow further GPU-applications to operateon this segmentation, the corresponding tex-
ture identifier is required, which can be retrieved by this function. Notice that the texture is only valid
during lifetime of the class instance. The function is thread-safe.

5.4 Example Program

The following example program in pseudo-code demonstratedthe usage of the core library:

Create_OpenGL_Context // QtGL, gtk, glut
CGpuSeg_Base * pSeg = new CGpuSeg_Base();
imgBG = Load_Background_RGBImage;
pSeg -> init(width,height);
pSeg -> set_background(imgAvg);
pSeg -> set_Params(...);
...
imgFG = Load_Foreground_RGBImage;
pSeg -> segment(imgFG, false);
if (Further_GPU_Applications)

SegTex_id = pSeg -> get_SegTex();
Execute_Further_GPU_Applications

if (Store_Segmentation)
imgSeg = Create_Empty_Buffer
pSeg -> get_segmentation(&imgSeg);

...
delete pSeg;
Destroy_OpenGL_Context

First an OpenGL drawing context has to be created, in case none is already defined. Then, after creat-
ing an instance of the segmentator class, it is initialized with the width and height of the current working
images. The loaded background image is transfered to the GPUand the parameter sets are defined after-
wards. On each newly loaded source image the segmentation isperformed. If further GPU applications
operate on the segmentation result, successive OpenGL instructions may be sent to the graphics hardware
without explicitely waiting for the GPU finished all previous commands. The OpenGL state-machine
guarantees that the texture memory is only read when previous write operations successively completed.
Additionally, the segmentation result could be stored in a dedicated buffer by reading out the texture
buffer.
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6 Results

The impact of the number of iterations during the MRF computation to the segmentation result is shown
in figure 9, whereby the prior frame is completely black. Without iterating at all, some outliers are
detected, depending on the threshold level. With increasing number of iterations the segmented regions
become more smooth and compact and isolated small foreground pixels are turned into background. The
parameters used areTs = 310, Odc = 5800, B1 = 2, andB2 = 200. We observed that robustness of
segmentation wrt. the static threshold is increased with the MRF iterations.

Figure 9: Segmentation result with different number of iterationsj=0,2,4,6 (from left to right) during the
MRF-computation.

As the algorithm is mainly designed for indoor applications, we recorded some image sequences in
our 3D-scanning setup (see[10]). Accounting for motion blur elimination and thus forcing low exposure
times, the grabbed images suffer from very low contrast and high image noise. Therefore darkness com-
pensation is essential for acceptable segmentations even the foreground object and the background are
nearly similar in luminance. Figure 10 demonstrates the importance of darkness compensation. All three
segmentations use the same parameter set. The fourth image is the result of an optimized CPU-version
of the segmentation without MRF-iterations, that is darkness compensation added to the algorithm of
Mester. Additionally we tested the algorithm in outdoor environments (see figure 11) and still get good
results.

To our knowledge, our GPU-based implementation outperforms any other existing image segmen-
tation wrt. runtime. Table (2) summarizes the measured timings dependent on the number of MRF-
iterations. The first two columns are based on images of size 640×512, whereas the rest operates on
640×480 images. The following cases are distinguished:

Figure 10: From left to right: BG-image, FG-image, segmentation without darkness compensation (d.c.),
CPU-based segmentation with MRF and d.c., GPU-based iterative segmentation with MRF, d.c. and 8
iterations.
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T1000,ext is the average runtime of 1000 segmentations without changing the source image. Since
each segmentation is performed without explicitely waiting for the result, the internal
instruction pipeline of the GPU is always filled. Thus, this mode simulates the usage
of our algorithm in combination with GPU-based post-processes. Theext-index de-
notes the measurment including the thread-safe mutex-locks and -unlocks as well as the
PBuffer-context-switches.

T1000,int is similar to the above, except the time is measured without the mutex-operations and
without the PBuffer-context-switches. Indeed, this simulates the usage of our algorithm
in combination with post-processing GPU-based applications, using the same PBuffer.
It turns out that a context-switch typically takes about 400µs.

T1,ext is the time needed for one segmentation run excluding the upload time for the source
image. Due to the fact that the internal pipeline of the GPU isno longer optimally filled
because the segmentation is performed withbWaitFinished=true , these times are
slightly larger than in the above pipelined cases.

T1,ext,up again is the time needed for one segmentation run, but now including the image upload.
Indeed, this time is highly dependent on the operating system and the graphics hardware
driver used.

T1,ext,up+dn measures the time needed for one segmentation run includingimage upload and the
segmentation result download viaget segmentation . Again, this time strongly de-
pends on the operating system and the drivers used.

iter T1000,ext T1000,int T1000,ext T1000,int T1,ext T1,ext,up T1,ext,up+dn

640×512 640×480

0 2.92 2.88 2.54 2.51 3.01 4.8 6.2
1 3.15 3.10 2.78 2.75 3.25 5.1 6.4
2 3.37 3.33 3.01 2.97 3.50 5.3 6.6
3 3.62 3.57 3.24 3.20 3.73 5.5 6.8
4 3.82 3.76 3.48 3.44 3.94 5.7 7.0
5 4.04 3.99 3.71 3.67 4.2 6.0 7.2
6 4.26 4.21 3.94 3.89 4.4 6.2 7.4
8 4.69 4.66 4.41 4.38 4.82 6.6 7.9
10 5.16 5.11 4.87 4.84 5.33 7.1 8.3

Table 2: Time measurements for the GPU-based segmentation w.r.t. the number of MRF-iterations. The
results are given inms.
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Figure 11: Segmentation results in indoor and outdoor environments. From left to right: BG-image, FG-
image, Segmentation usind darkness compensation and 8 MRF iterations on the GPU. Processing time
for each image is approx. 3ms
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